ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.
Citation:
ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.
ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.
Citation:
ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.
The following is proved:1)The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix.2)The equivalent assumed stress modes lead to the identical hybrid element.The Hilbert stress subspace of the assumed stress modes is established.So,it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method.Because of the resulting diagonal flexibility matrix,the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency is improved greatly.The numerical examples show that the method is effective.
Pian T H H. Derivation of element stiffness matrices[J]. AIAA,1964,2(3):576-577.
[2]
Hoa S V, FENG Wei. Hybrid Finite Element Method for Stress Analysis of Laminated Composites[M]. Boston/Dordrecht/London:Kluwer Academic Publihsers,1998.
[3]
HUANG Qian. Modal analysis of deformable bodies with finite degree of deformation freedom-An approach to determination of natural stres modes in hybrid finite elements[A]. In: Chien Wei-zang, Fu Zi-zhi, Eds. Advances in Applied Mathematics & Mechancis in China[C]. IAP,1991,3:283-303.
[4]
FENT Wei, Hoa S V, HUANG Quan. Classification of stress modes in assumed stress fields of hybrid finite elements[J]. International Journal for Numerical Methods in Engineering,1997,40(23):4313-4339.
Saether Erik, Explicit determination of element stiffness matrix in the hybrid stress method[J]. International Journal for Numerical Methods in Engineering,1995,38(15):2547-2571.
[9]
Han J, Hoa S V. A three-dimensional multilayer composite finite element for stress analysis of composite laminates[J].International Journal for Numerical Methods in Engineering,1993,36(22):3903-3914.
[10]
MacNeal R H, Harder R L. A proposed standard set of problems to test finite element accuracy[J]. Finite Element in Analysis and Design,1985,1(1):3-20.
[11]
MacNeal R H. A theorem regarding the locking of tapered four-noded membrane elements [J]. International Journal for Numerical Methods in Engineering,1987,24(9):1793-1799.
ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.
ZHANG Can-hui, FENG Wei, HUANG Qian. The Stress Subspace of Hybrid Stress Element and the Diagonalization Method for Flexibility Matrix H[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1124-1132.