Citation: | SHENG Bao-huai, LIU San-yang. On the Generalized Fritz John Optimality Conditions of Vector Optimization With Set-Valued Maps Under Benson Proper Efficiency[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1289-1295. |
[1] |
胡毓达.多目标规划有效性理论[M].上海:上海科学技术出版社,1994,126-127.
|
[2] |
Luc D T.Theory of Vector Optimization,Lecture Notes in Economics and Mathematical Systems[M].Berlin:Springer-Verlag,1989:140-164.
|
[3] |
Corley H W.Optimality conditions for maximizations of set-valued functions[J].J Optim Theory Appl,1988,58(1):1-10.
|
[4] |
CHEN Guang-ya,Jahn J.Optimality conditions for set-valued optimization problems[J].Math Methods Oper Res,1998,48(2):187-200.
|
[5] |
孟志青.集值映射的Hahn-Banach定理[J].应用数学和力学,1998,19(1):55-61.
|
[6] |
Baier J,Jahn J.On subdifferential of set-valued maps[J].J Optim Theory Appl,1999,100(1):233-240.
|
[7] |
WANG Shou-yang,LI Zhong-fei.Scalarization and Lagrange duality in multiobjective optimization[J].Optimization,1992,26(2):315-324.
|
[8] |
CHEN Guang-ya,RONG Wei-dong.Characterizations of the Benson proper efficiency for nonconvex vector optimization[J].J Optim Theory Appl,1998,98(2):365-384.
|
[9] |
LI Zhong-fei.Benson proper efficiency in the vector optimization of set-valued maps[J].J Optim Theory Appl,1998,98(3):623-649.
|
[10] |
盛宝怀,刘三阳,熊胜君.Benson 真有效意义下向量集值优化的广义Fritz John条件[J].经济数学,2000,17(1):59-65.
|
[11] |
Aubin J P,Frankowska H.Set-Valued Analysis[M].Boston:Birkhauser,1990,121-138.
|
[12] |
Borwein J M.Proper efficient points for maximizations with respect to cone[J].SIAM J Control Optim,1977,15(1):57-63.
|
[13] |
LI Ze-min.A theorem of the alternative and its application to the optimization of set-valued maps[J].J Optim Theory Appl,1999,100(2):365-375.
|
[14] |
Dauer J P,Saleh O A.A characterization of proper minimal problem as a solutions of sublinear optimization problems[J].J Math Anal Appl,1993,178(2):227-246.
|
[15] |
Zowe J.A remark on a regularity assumption for the mathematical programming problem in Banach spaces[J].J Optim Theory Appl,1978,25(3):375-381.
|
[1] | LIU Ying, FU Xiaoheng, TANG Liping. Asymptotic Characterization of Non-Emptiness and Boundedness of Efficient Solution Sets for Nonconvex Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 519-527. doi: 10.21656/1000-0887.450235 |
[2] | YANG Ming, LI Linting, GAO Ying. Relations Between Robust Efficient Solutions and Properly Efficient Solutions to Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1364-1372. doi: 10.21656/1000-0887.400032 |
[3] | CHEN Wang, ZHOU Zhiang. Optimality Conditions for Set-Valued Vector Equilibrium Problems With Constraints Involving Improvement Sets[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1189-1197. doi: 10.21656/1000-0887.390104 |
[4] | TANG Li-ping, YANG Yu-hong. Characterizations of E-Borwein Properly Efficient Solutions[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1399-1404. doi: 10.21656/1000-0887.380238 |
[5] | LIU Dan-yang, JIANG Ya. Scalarization of Mixed Vector Variational Inequalities and Error Bounds of Gap Functions[J]. Applied Mathematics and Mechanics, 2017, 38(6): 715-726. doi: 10.21656/1000-0887.370292 |
[6] | LI Xiao-yan, GAO Ying. Optimality Conditions for Proximal Proper Efficiency in Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2015, 36(6): 668-676. doi: 10.3879/j.issn.1000-0887.2015.06.011 |
[7] | ZHAO Yong, PENG Zai-yun, ZHANG Shi-sheng. Stability of the Sets of Efficient Points of Vector-Valued Optimization Problems[J]. Applied Mathematics and Mechanics, 2013, 34(6): 643-650. doi: 10.3879/j.issn.1000-0887.2013.06.010 |
[8] | XU Hai-li, GUO Xing-ming. Auxiliary Principle and Three-Step Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(6): 643-650. |
[9] | SHENG Bao-huai, LIU San-yang. Kuhn-Tucker Condition and the Wolfe Duality of Preinvex Set-Valued Optimization[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1447-1456. |
[10] | LI Ting. Set Value Mapping and Its Application[J]. Applied Mathematics and Mechanics, 2006, 27(2): 237-242. |
[11] | YAN Qing-you, XIONG Xi-wen. An Effcient and Stable Structure Preserving Algorithm for Computing the Eigenvalues of a Hamiltonian Matrix[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1150-1168. |
[12] | XUAN Zhao-cheng, LI Xing-si. Unilateral Contact Problems Using Quasi-Active Set Strategy[J]. Applied Mathematics and Mechanics, 2002, 23(8): 811-818. |
[13] | J. M. Soriano. Fredholm and Compact Mappings Sharing a Value[J]. Applied Mathematics and Mechanics, 2001, 22(6): 609-612. |
[14] | Amitabh Banerjee, Thakur Balwant Singh. A Fixed Point Theorem for Set-Valued Mappings[J]. Applied Mathematics and Mechanics, 2001, 22(12): 1255-1261. |
[15] | Gu Guoqing, Yu Kinwah. A Theoretical Research to Effective Viscosity of Colloidal Dispersions[J]. Applied Mathematics and Mechanics, 2000, 21(3): 245-252. |
[16] | Cao Chun. Fuzzy Approaching Set and Fuzzy Approaching Functional Mapping[J]. Applied Mathematics and Mechanics, 1998, 19(11): 1004-1013. |
[17] | Ding Xieping, He Yiran. Best Approximation Theorem for Set-Valued Mappings without Convex Values and Continuity[J]. Applied Mathematics and Mechanics, 1998, 19(9): 773-778. |
[18] | Meng Zhiqing. Hahn-Banach Theorem of Set-Valued Map[J]. Applied Mathematics and Mechanics, 1998, 19(1): 54-61. |
[19] | Hu Ning. An Effective Boundary Method for the Analysis of Elastoplastic Problems[J]. Applied Mathematics and Mechanics, 1992, 13(8): 711-718. |
[20] | Ding Xie-ping. Fixed Point Theorems of Random Set-Valued Mappings and Their Applications[J]. Applied Mathematics and Mechanics, 1984, 5(4): 561-575. |