Citation: | LUO Shao-kai. Form Invariance and Noether Symmetrical Conserved Quantity of Relativistic Birkhoffian Systems[J]. Applied Mathematics and Mechanics, 2003, 24(4): 414-422. |
[1] |
Birkhoff G D.Dynamical System[M].New York:AMS College Publ,Providence,RI,1927.
|
[2] |
Santilli R M.Foundations of Theoretical MechanicsⅡ[M].New York:Springer-Verlag,1983,110-280.
|
[3] |
MEI Feng-xiang.Noether theory of Birkhoffian system[J].Science in China,Series A,1993,36(12):1456-1547.
|
[4] |
MEI Feng-xiang.Stability of equilibrium for the autonomous Birkhoffian system [J].Chinese Science Bulletin,1993,38(10):816-819.
|
[5] |
吴惠彬,梅凤翔.广义Birkhoff系统的变换理论[J].科学通报,1995,40(10):885-888.
|
[6] |
MEI Feng-xiang,Lévesque E I.Generalized canonical realization and Birkhoff's realization of Chaplygin's nonholonomic system [J].Transactions of the CSME,1995,19(2):59-73.
|
[7] |
MEI Feng-xiang.Poisson's theory of Birkhoffian system [J].Chinese Science Bulletin,1996,41(8):641-645.
|
[8] |
梅凤翔.用独立变量表示的约束Birkhoff系统的运动稳定性[J].应用数学和力学,1997,,18(1):55-60.
|
[9] |
梅凤翔.Birkhoff系统动力学研究进展[J].力学进展,1997,27(4):436-446.
|
[10] |
GUO Ying-xiang,MEI Feng-xiang.Integrability for Pfaff constrained systems:A geometrial theory[J].Acta Mechanica Sinica,1998,14(1):85-91.
|
[11] |
MEI Feng-xiang,ZHANG Yong-fa,SHANG Mei.Lie symmetries and conserved quantities of Birkhoffian system[J].Mechanics Research Communications,1999,26(1):7-12.
|
[12] |
陈向炜,罗绍凯,梅凤翔.二阶自治Birkhoff系统的平衡点分岔[J].固体力学学报,2000,21(3):251-255.
|
[13] |
GUO Yong-xin,LUO Shao-kai,SHANG Mei,et al.Birkhoffian formulations of nonholonomic constrained systems[J].Reports on Mathematical Physics,2001,47(3):313-322.
|
[14] |
梅凤翔,史荣昌,张永发,等.Birkhoff系统动力学[M].北京:北京理工大学出版社,1996.
|
[15] |
梅凤翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999.
|
[16] |
李子平.经典和量子约束系统及其对称性质[M].北京:北京工业大学出版社,1993.
|
[17] |
罗绍凯.相对论性分析力学理论[J].教材通讯,1987,(5):31-34.
|
[18] |
LUO Shao-kai.Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic system [A].In:WANG Zhao-lin Ed.Proc ICDVC[C].Beijing:Peking University Press,1990,645-652.
|
[19] |
罗绍凯.相对论非线性非完整系统动力学理论[J].上海力学,1991,12(1):67-70.
|
[20] |
罗绍凯.广义事件空间中的相对论性Hamilton原理和Lagrange方程[J].大学物理,1992,11(10):14-16.
|
[21] |
罗绍凯.变质量高阶非线性非完整系统的相对论性广义Volterra方程[J].数学物理学报,1992,12(增刊):27-29.
|
[22] |
罗绍凯.变质量可控力学系统的相对论性变分原理与运动方程[J].应用数学和力学,1996,17(7):645-653.
|
[23] |
李元成,方建会.相对论性万有DAlembert原理的统一形式[J].大学物理,1991,13(6):27-29.
|
[24] |
方建会,李元成.变质量系统相对论力学在速度空间中的变分原理[J].力学与实践,1994,13(5):19-20.
|
[25] |
罗绍凯.转动相对论力学与转动相对论分析力学[J].北京理工大学学报,1996,16(S1):154-158.
|
[26] |
罗绍凯.转动系统的相对论性分析力学理论[J].应用数学和力学,1998,19(1):43-53.
|
[27] |
傅景礼,陈向炜,罗绍凯.转动系统相对论性动力学方程的代数结构与Poisson积分[J].应用数学和力学,1999,20(11):1175-1182.
|
[28] |
傅景礼,陈向炜,罗绍凯.转动相对论系统的Lie对称性和守恒量[J].应用数学和力学,2000,21(5):495-500.
|
[29] |
罗绍凯,郭永新,陈向炜,等.转动相对论系统动力学的积分理论[J].物理学报,2001,50(11):2053-2058.
|
[30] |
乔永芬,李仁杰,孟军.非完整转动相对论系统的Lindelof方程[J].物理学报,2001,50(9):1637-1642.
|
[31] |
方建会,赵嵩卿.相对论转动变质量系统的Lie对称性与守恒量[J].物理学报,2001,50(3):390-393.
|
[32] |
傅景礼,王新民.相对论Birkhoff系统的Lie对称性与守恒量[J].物理学报,2000,49(6):1023-1029.
|
[33] |
傅景礼,陈向炜,罗绍凯.相对论Birkhoff系统的Noether理论[J].固体力学学报,2001,22(3):263-267.
|
[34] |
傅景礼,陈立群,罗绍凯,等.相对论Birkhoff系统动力学研究[J].物理学报,2001,50(12):2289-2295.
|
[35] |
罗绍凯,傅景礼,陈向炜.转动系统相对论Birkhoff动力学的基本理论[J].物理学报,2001,50(3):383-389.
|
[36] |
LUO Shao-kai,CHEN Xiang-wei,FU Jing-li.Birkhoff's equations and geometrical theory of rotational relativistic system[J].Chinese Physics,2001,10(4):271-276.
|
[37] |
罗绍凯,郭永新,陈向炜,等.转动相对论Birkhoff系统动力学的场方法[J].物理学报,2001,50(11):2049-2052.
|
[38] |
Noether A E.Invariance variations problems[J].Kgl Ges Wiss Nachr Gttingen Math-Phys,1918,(2):235-257.
|
[39] |
Candottie E,Palmieri C,Vitale B.On the inversion of Noethers theory in classical dynamical system[J].America Journal of Physics,1972,40(5):424-429.
|
[40] |
DjukiAc'Dj S, VujanoviAc'B.Noethers theory in classical nonconservative mechanics[J].Acta Mechanica,1975,23(1):17-27.
|
[41] |
VujanoviAc'B.Conservation laws of dynamical system via DAlembert principle[J].International Journal of Non-Linear Mechanics,1978,13(2):185-197.
|
[42] |
VujanoviAc'B.A study of conservation laws of dynamical systems by means of the differential variational principles of Jourdain and Gauss [J].Acta Mechanica,1986,65(1):63-80.
|
[43] |
李子平.约束系统的对称变换[J].物理学报,1981,30(12):1699-1705.
|
[44] |
李子平.非完整非保守奇异系统正则形式的Noether定理及其逆定理[J].科学通报,1992,37(23):2204-2205.
|
[45] |
Bahar L Y,Kwatny H G.Extension of Noether's theory to constrained nonconservative dynamical systems[J].International Journal of Non-Linear Mechanics,1987,22(2):125-138.
|
[46] |
刘端.非完整非保守动力学系统的守恒律[J].力学学报,1989,21(1):75-83.
|
[47] |
刘端.非完整非保守动力学系统的Noether定理及其逆定理[J].中国科学A辑,1991,31(4):419-429.
|
[48] |
罗绍凯.非完整非有势系统相对于非惯性系的广义Noether定理[J].应用数学和力学,1991,12(9):863-870.
|
[49] |
LUO Shao-kai.Generalized Noether's theorem of variable mass higher-order nonholonomic mechanical system in noninertial reference frame [J].Chinese Science Bulletin,1991,36(22):1930-1932.
|
[50] |
罗绍凯.相对论力学的广义守恒律[J].信阳师范学院学报,1991,4(4):57-64.
|
[51] |
LUO Shao-kai.On the invariant theory of nonholonomic system with constraints of non-Chetaev type[J].Acta Mechanica Solida Sinica,1993,6(1):47-57.
|
[52] |
赵跃宇,梅凤翔.力学系统的对称性与守恒量[M].北京:科学出版社,1999,1-72.
|