YUN Tian-quan, LEI Guang-long. Simplest Differential Equation of Stock Price,Its Solution and Relation to Assumption of Black-Scholes Model[J]. Applied Mathematics and Mechanics, 2003, 24(6): 579-582.
Citation: YUN Tian-quan, LEI Guang-long. Simplest Differential Equation of Stock Price,Its Solution and Relation to Assumption of Black-Scholes Model[J]. Applied Mathematics and Mechanics, 2003, 24(6): 579-582.

Simplest Differential Equation of Stock Price,Its Solution and Relation to Assumption of Black-Scholes Model

  • Received Date: 2002-02-06
  • Rev Recd Date: 2003-02-19
  • Publish Date: 2003-06-15
  • Two kinds of mathematical expressions of stock price, one of which based on certain description is the solution of the simplest differential equation(S. D. E.) obtained by method similar to that used in solid mechanics, the other based on uncertain description(i. e., the statistic theory)is the assumption of Black-Scholes s model(A. B-S. M.) in which the density function of stock price obeys logarithmic normal distribution, can be shown to be completely the same under certain equivalence relation of coefficients. The range of the solution of S. D. E. has been shown to be suited only for normal cases (no profit, or lost profit news, etc.) of stock market, so the same range is suited for A. B-S. M. as well.
  • loading
  • [1]
    钱可通.当代投资权威理论[M].香港:香港出版集团有限公司,1990,1-25.
    [2]
    Ghaziri H,Elfakhani S,Assi J.Neural networks approach to pricing options[J].Neural Network World,2000,(1/2):271-277.
    [3]
    谢素.不变方差弹性(CEV)过程障碍期权的定价[J].管理科学学报,2001,4(5):13-20.
    [4]
    钱立.简评期权定价理论的主要发展[J].经济科学,2000,(4):89-97.
    [5]
    柳延延.概率与决定论[M].上海:上海社会科学院出版社,1996,6.
    [6]
    云天铨.股价变化率的基本积分-微分方程[J].华南理工大学学报,1996,24(6):35-39.
    [7]
    云天铨.常规情形的股价短期预测[J].华南理工大学学报,1997,25(5):47-51.
    [8]
    云天铨.计算股市的基本方程、理论和原理(Ⅰ)——基本方程[J].应用数学和力学,1999,20(2):145-152.
    [9]
    云天铨.计算股市的基本方程、理论和原理(Ⅱ)——基本原理[J].应用数学和力学,1999,20(7):675-681.
    [10]
    云天铨.计算股市的基本方程、理论和原理(Ⅲ)——基本理论[J].应用数学和力学,2000,21(8):777-781.
    [11]
    云天铨.金融衍生产品的力学方法分析(Ⅰ)——期指价格基本方程[J].应用数学和力学,2001,22(1):104-110.
    [12]
    云天铨.金融衍生产品的力学方法分析(Ⅱ)——期权市场价格基本方程[J].应用数学和力学,2001,22(9):905-910.
    [13]
    云天铨.博奕理论在股票和期权交易中的应用[J].预测,2001,(2):36-38.
    [14]
    《数学手册》编写组.数学手册[M].北京:高等教育出版社,1979,798.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2153) PDF downloads(1073) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return