LI Zi-zhen, XU Cai-lin, WANG Wan-xiong. Two-Dimensional Nonlinear Dynamic System Model of Interspecific Interaction and Numerical Simulation Research on It[J]. Applied Mathematics and Mechanics, 2003, 24(7): 739-746.
Citation: LI Zi-zhen, XU Cai-lin, WANG Wan-xiong. Two-Dimensional Nonlinear Dynamic System Model of Interspecific Interaction and Numerical Simulation Research on It[J]. Applied Mathematics and Mechanics, 2003, 24(7): 739-746.

Two-Dimensional Nonlinear Dynamic System Model of Interspecific Interaction and Numerical Simulation Research on It

  • Received Date: 2002-01-21
  • Rev Recd Date: 2002-03-10
  • Publish Date: 2003-07-15
  • The mechanism and the course of two-dimensional nonlinear dynamic system of interspecific interaction were dealt with systematically.By extending the Lotka-Volterra model from the viewpoint of biomechanics,it developed new models of two-dimensional nonlinear autonomous and nonautonomous dynamic systems,with its equilibrium point s stability and the existence and stability of its periodical solutions analyzed,and did numerical simulation experiments on its dynamics course.The results show that efficiency of interaction between two populations,time-varying effort,and change direction of action coefficient and reaction coefficient have important influences on the stability of dynamic system,that too large or too small interspecific interaction efficiency and contrary change direction of action coefficient and reaction coefficient may result in the nonstability of the system,and thus it is difficult for two populations to coexist,and that time-varying active force contributes to system stability.
  • loading
  • [1]
    张大勇.理论生态学研究[M].北京:高等教育出版社,施普格林出版社,2000.
    [2]
    陈兰荪,陈健.非线性生物动力系统[M].北京:科学出版社,1993.
    [3]
    原存德,裴永珍.具有不同扩散率的两种群Ayala竞争模型的持续生存[J].应用数学和力学,1999,20(4):443-440.
    [4]
    张银萍,孙继涛.三种群Lotka-Volterra非周期食饵-捕食系统的持久性[J].应用数学和力学,2000,21(8):792-796.
    [5]
    郭瑞海,袁晓凤.一类微生物种群生态数学模型的Hopf分支[J].应用数学和力学,2000,21(7):693-700.
    [6]
    李骊.强非线性振动系统的定性理论与定量方法[M].北京:科学出版社,1997.
    [7]
    凌复华.非线性动力系统的数值研究[M].上海:上海交通大学出版社,1989.
    [8]
    Myerscough M R,Darwen M J,Hogarth W L.Stability,persistence and structural stability in a classical predator-prey model[J].Ecological Modelling,1996,89:31-42.
    [9]
    林建忠,林江,朱丽兵.气固两相圆射流场涡结构影响因粒扩散的研究[J].应用数学和力学,1999,20(5):470-476.
    [10]
    王银邦.非轴对称载荷作用的外部圆形裂纹问题[J].应用数学和力学,2001,22(1):9-15.
    [11]
    黄先开,董勤喜.具有时滞的高维周期系统的周期解[J].应用数学和力学,1999,20(8):847-850.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2381) PDF downloads(688) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return