| Citation: | YAN Hai-feng, LIU San-yang. New Method to Option Pricing for the General Black-Scholes Model-An Acturarial Approach[J]. Applied Mathematics and Mechanics, 2003, 24(7): 730-738. |
| [1] |
Merton R.Optimum consumption and portfolio rules in continuous time model[J].Journal of Economic Theory,1971,3(3):373-413.
|
| [2] |
Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(4):633-654.
|
| [3] |
Duffie D.Security Markets:Stochastic Models[M].Boston:Academic Press,1988.
|
| [4] |
Bladt M,Rydberg H T.An actuarial approach to option pricing under the physical measure and without market assumptions[J].Insurance:Mathematics and Economics,1998,22(1):65-73.
|
| [5] |
Duffie D.Dynamic Asset Pricing Theory[M].Princeton,New Jersey:Princeton University Press,1996.
|
| [6] |
Merton R.Continuous-Time Finance[M].Oxford:Blacwell Publishers,1990.
|
| [7] |
Kouritzin M A,Deli Li.On explicit solution to stochastic differential equation[J].Stochastic Analysis and Applications,2000,18(4):571-580.
|
| [8] |
薛宏.鞅方法在未定权益定价中的应用[J].工程数学学报,2000,17(1):135-138.
|
| [9] |
Roos Cox J C,Rubinstein S A.Option pricing:A simplified approach[J].Journal of Economics,1979,7(2):229-263.
|
| [10] |
Bernt,Фksendal.Stochasitc Differential Equations[M].Fourth Ed.New York:Springer-Verlag,1995.
|