LUO Zhen-dong, ZHU Jiang, XIE Zheng-hui, ZHANG Gui-fang. Difference Scheme and Numerical Simulation Based on Mixed Finite Element Method for Natural Convection Problem[J]. Applied Mathematics and Mechanics, 2003, 24(9): 973-983.
Citation:
LUO Zhen-dong, ZHU Jiang, XIE Zheng-hui, ZHANG Gui-fang. Difference Scheme and Numerical Simulation Based on Mixed Finite Element Method for Natural Convection Problem[J]. Applied Mathematics and Mechanics, 2003, 24(9): 973-983.
LUO Zhen-dong, ZHU Jiang, XIE Zheng-hui, ZHANG Gui-fang. Difference Scheme and Numerical Simulation Based on Mixed Finite Element Method for Natural Convection Problem[J]. Applied Mathematics and Mechanics, 2003, 24(9): 973-983.
Citation:
LUO Zhen-dong, ZHU Jiang, XIE Zheng-hui, ZHANG Gui-fang. Difference Scheme and Numerical Simulation Based on Mixed Finite Element Method for Natural Convection Problem[J]. Applied Mathematics and Mechanics, 2003, 24(9): 973-983.
The non stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.
Paquet L.The boussinesq equations in presence of thermocapillarity at some part of the boundary[A].In:Lumer G,Nicaise S,Shulze B W Eds.Partial Differential Equations,Mathematical Research[C].82,Berlin:Akademie Verlag,266-278.
[4]
Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations[M].Berlin:Springer-Verlag,1986.
[5]
Adams R A.Sobolev Spaces[M].New York:Academic Press,1975.