ZHU Qing-feng, SHI Yu-feng, GONG Xian-jun. Solutions of General Forward-Backward Doubly Stochastic Differential Equations[J]. Applied Mathematics and Mechanics, 2009, 30(4): 484-494.
Citation: ZHU Qing-feng, SHI Yu-feng, GONG Xian-jun. Solutions of General Forward-Backward Doubly Stochastic Differential Equations[J]. Applied Mathematics and Mechanics, 2009, 30(4): 484-494.

Solutions of General Forward-Backward Doubly Stochastic Differential Equations

  • Received Date: 2008-03-13
  • Rev Recd Date: 2009-02-27
  • Publish Date: 2009-04-15
  • A general type of forward-backward doubly stochastic differential equations(FBDSDEs in short) was studied,which extends many important equations well studied before,including stochastic Hamiltonian systems.Under some much weaker monotonicity assumptions,the existence and uniqueness results for measurable solutions were established by means of a method of continuation.Furthermore the continuity and differentiability of the solutions of FBDSDEs depending on parameters were discussed.
  • loading
  • [1]
    Pardoux E, Peng S G.Adapted solution of a backward stochastic differential equation[J].Systems Control Letters,1990,14(1):55-61. doi: 10.1016/0167-6911(90)90082-6
    [2]
    El Karoui N,Peng S G,Quenez M C. Backward stochastic differential equations in finance[J].Mathematical Finance,1997,7(1):1-71. doi: 10.1111/1467-9965.00022
    [3]
    Ma J,Yong J M.Forward-Backward Stochastic Differential Equations and Their Applications[M]. Lecture Notes in Mathematics,1702,Berlin: Springer,1999.
    [4]
    Antonelli F. Backward-forward stochastic differential equations[J].The Annals of Applied Probability,1993,3(3):777-793. doi: 10.1214/aoap/1177005363
    [5]
    Ma J,Protter P,Yong J M. Solving forward-backward stochastic differential equations explicitly—a four step scheme[J].Probab Theory Related Fields,1994,98(2):339-359. doi: 10.1007/BF01192258
    [6]
    Hu Y,Peng S G. Solution of forward-backward stochastic differential equations[J].Probab Theory Related Fields,1995,103(2):273-283. doi: 10.1007/BF01204218
    [7]
    Peng S G,Wu Z. Fully coupled forward-backward stochastic differential equations and applications to optimal control[J].SIAM J Control Optim,1999,37(3):825-843. doi: 10.1137/S0363012996313549
    [8]
    Yong J M. Finding adapted solutions of forward-backward stochastic differential equations—method of continuation[J].Probab Theory Related Fields,1997,107(3):537-572. doi: 10.1007/s004400050098
    [9]
    Peng S G,Shi Y F. Infinite horizon forward-backward stochastic differential equations[J].Stochastic Processes and Their Applications,2000,85(1):75-92. doi: 10.1016/S0304-4149(99)00066-6
    [10]
    Peng S G. Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions[J].Stochastic Processes and Their Applications,2000,88(2):259-290. doi: 10.1016/S0304-4149(00)00005-3
    [11]
    Bismut J M. Conjugate convex functions in optimal stochastic control[J].Journal of Mathematial Analysis and Applications,1973,44(4):384-404. doi: 10.1016/0022-247X(73)90066-8
    [12]
    Peng S G,Shi Y F. A type of time-symmetric forward-backward stochastic differential equations[J].C R Acad Sci Paris,Ser Ⅰ,2003,336(9): 773-778. doi: 10.1016/S1631-073X(03)00183-3
    [13]
    Pardoux E,Peng S G. Backward doubly stochastic differential equations and systems of quasilinear parabolic SPDE's[J].Probab Theory Related Fields,1994,98(2):209-227. doi: 10.1007/BF01192514
    [14]
    Shi Y F. Singularly perturbed boundary value problems[J].Acta Mathematicae Applacatea Sinica,1999,15(4):409-417. doi: 10.1007/BF02684042
    [15]
    Peng S G. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations[J].Stochastics,1991,37(1/2):61-74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2718) PDF downloads(643) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return