CHEN Guo-wang, HOU Chang-shun. Initial Value Problem for a Class of Nonlinear Wave Equations of Fourth Order[J]. Applied Mathematics and Mechanics, 2009, 30(3): 369-378.
Citation: CHEN Guo-wang, HOU Chang-shun. Initial Value Problem for a Class of Nonlinear Wave Equations of Fourth Order[J]. Applied Mathematics and Mechanics, 2009, 30(3): 369-378.

Initial Value Problem for a Class of Nonlinear Wave Equations of Fourth Order

  • Received Date: 2008-08-11
  • Rev Recd Date: 2009-01-16
  • Publish Date: 2009-03-15
  • The existence and the uniqueness of the global generalized solution and the global classical solution to the initial value problem for a class of nonlinear wave equation of fourth order are studied in the fractional order Sobolev space by the contraction mapping principle and the extension theorem. The sufficient conditions for blow up of the solution to the above initial value problem are given.
  • loading
  • [1]
    朱位秋.弹性杆中的非线性波[J].固体力学学报, 1980,1(2):247-253.
    [2]
    庄蔚,杨桂通.孤波在非线性弹性杆中的传播[J].应用数学和力学,1986,7(7):571-581.
    [3]
    张善元, 庄蔚.非线性弹性杆中的应变孤波[J].力学学报, 1998,20(1):58-66.
    [4]
    Makhankov V G.Dynamics of classical soliton(in non-integrable systems)[J].Physics Reports,Phys Lett C,1978,35(1):1-128.
    [5]
    Liu Y. Existence and blow up of solution of a nonlinear Pochhammer-Cheer equation[J].Indiana Univ Math J,1996,45(3):797-816.
    [6]
    Akmel Dé Godefrog.Blow up of solutions of a generalized Boussinesq equation[J].IMA Journal of Applied Mathematics,1998,60(1):123-138. doi: 10.1093/imamat/60.2.123
    [7]
    Liu Y. Strong instability of solitary-waves solutions of a generalized Boussinesq equation[J].J Differential Equations,2000,164(2):223-239. doi: 10.1006/jdeq.2000.3765
    [8]
    Adrian Constantin,Luc Molinet. The initial value problem for a generalized Boussinesq equation[J].Differential and Integral Equations,2002,15(9):1061-1072.
    [9]
    CHEN Guo-wang,WANG Shu-bin.Existence and nonexistence of global solution for the generalized IMBq equation[J].Nonlinear Analysis TMA,1999,36(8):961-980. doi: 10.1016/S0362-546X(97)00710-4
    [10]
    WANG Shu-bin,CHEN Guo-wang.Small amplitude solutions of the generalized IMBq equation[J].J Math Anal,2002,274(2):846-866. doi: 10.1016/S0022-247X(02)00401-8
    [11]
    CHEN Guo-wang,WANG Shu-bin.Existence and nonexistence of global solution for nonlinear hyperbolic equations of higher order[J].Comment Math Univ Carolin,1995,36(3):475-487.
    [12]
    CHEN Xiang-ying.Existence and nonexistence of the global solutions for nonlinear evolution equation of fourth-order[J].Appl Math J Chinese Univ Ser B,2001,16(3):251-258. doi: 10.1007/s11766-001-0063-6
    [13]
    CHEN Xiang-ying,CHEN Guo-wang.Asymptotic behavior and blow-up of solutions to a nonlinear evolution equation of fourth orders[J].Nonlinear Analysis TMA,2008,68(4):892-904. doi: 10.1016/j.na.2006.11.045
    [14]
    WANG Shu-bin,CHEN Guo-wang. Cauchy problem of the generalized double dispersion equation[J].Nonlinear Analysis TMA,2006,64(1):159-173. doi: 10.1016/j.na.2005.06.017
    [15]
    Levine H A. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations[J].SIAM J Math Anal,1974,5(1):138-146. doi: 10.1137/0505015
    [16]
    Liu Y, Xu R.Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation[J].Physica D,2008,237(6):721-731. doi: 10.1016/j.physd.2007.09.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3189) PDF downloads(970) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return