CHEN Hao, BAO Lin. Mechanism of Unsteady Aerodynamic Heating With a Sudden Change in Surface Temperature[J]. Applied Mathematics and Mechanics, 2009, 30(2): 160-170.
Citation: CHEN Hao, BAO Lin. Mechanism of Unsteady Aerodynamic Heating With a Sudden Change in Surface Temperature[J]. Applied Mathematics and Mechanics, 2009, 30(2): 160-170.

Mechanism of Unsteady Aerodynamic Heating With a Sudden Change in Surface Temperature

  • Received Date: 2008-12-04
  • Rev Recd Date: 2008-12-14
  • Publish Date: 2009-02-15
  • The chazacteiistics and mechanism of the unsteady aerodynamic heating of a transient hypersonic borurdary layer caused by sudden change in surface temperature was studied, the complete time history of wall heat flax was presented by both analytical and numerical approaches. With analytical methods, the unsteady compressible boundary layer equation was solved. In the neighborhoods of initial and final steady state, the transient response can be expressed by a steady-state solution plus a perturbation series, respectively.By patching these two solutions, the complete solution in the elrtire time domain wag achieved. In the region where the assumptions of analytical approach are satisfied, the numerical and analytical results were matched well, proving the reliability of the methods. The result showed two distinct features of the unsteady response. In the short period just after a sudden increase in the wall temperature, the direction of the wall heat flux reverted, a new inflexion near the wall arose in the profile of the thermal boundary layer, which is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, which means that, in a long-term aerodynamic heating process concidering only rinsready surface temperature, the unsteady characteristics of the flow can be ignored and the traditional quasi-steady aerodynamic heating prediction methods are still valid.
  • loading
  • [1]
    Kolodziej P. Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nosetips, NASA-TM-11204[R]. NASA, 1997.
    [2]
    Kontinos D. A coupled fluid-, structural-heating analysis method for metallic thermal protection panels, AIAA-1996-1808[R]. AIAA, 1996.
    [3]
    Quinn R D, Gong L. A method for calculating transient surface temperatures and surface heating rates for high-speed aircraft, NASA-TP-2000-209034[R]. NASA, 2000.
    [4]
    Riley N. Unsteady heat transfer for flow over a flat plate[J].J Fluid Mech,1963,17(1): 97-104. doi: 10.1017/S0022112063001130
    [5]
    Chao B T, Cheema L S. Unsteady heat transfer in laminar boundary layer over a flat plate[J]. Internat J Heat Mass Transfer,1968,11(9):1311-1324. doi: 10.1016/0017-9310(68)90177-4
    [6]
    Rebay M, Padet J. Laminar boundary-layer flow over a semi-infinite plate impulsively heated or cooled[J].Eur Phys J AP,1999,7(3):263-269. doi: 10.1051/epjap:1999104
    [7]
    Polidori G, Padet J. Transient laminar forced convection with arbitrary variation in the wall heat flux[J].Heat and Mass Transfer,2002,38(4/5):301-307. doi: 10.1007/s002310100273
    [8]
    Cheng W T, Lin H T. Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge[J].International Journal of Engineering Science,2002,40(5): 531-548. doi: 10.1016/S0020-7225(01)00081-7
    [9]
    Rebay M, Padet J. Transient laminar forced convection from a wedge flow[J].Internat Comm Heat Mass Transfer,2004,31(4): 537-548. doi: 10.1016/S0735-1933(04)00034-X
    [10]
    Padet J. Transient convective heat transfer[J].J Braz Soc Mech Sci & Eng,2005,27(1): 74-96.
    [11]
    Harris S D, Ingham D B, Pop I.Transient boundary-layer heat transfer from a flat plate subjected to a sudden change in heat flux[J].Eur J Mech B-Fluids,2001,20(2):187-204. doi: 10.1016/S0997-7546(00)01112-2
    [12]
    Kumari M, Nath G. Transient laminar compressible boundary layers over a permeable circular cone near a plane of symmetry[J].Internat J Heat Mass Transfer,2005,48(13):2771-2778. doi: 10.1016/j.ijheatmasstransfer.2005.01.031
    [13]
    Van Dyke M. Computer extension of perturbation series in fluid mechanics[J].SIAM Journal on Applied Mathematics,1975,28(3):720-734. doi: 10.1137/0128060
    [14]
    Bijl H, Carpenter M H, Vasta V N,et al.Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow[J].Journal of Computational Physics,2002,179(1):313-329. doi: 10.1006/jcph.2002.7059
    [15]
    张涵信. 求解气动方程的高阶精度格式及其相关问题[A].见:全国计算流体力学会议组委会、北京空气动力研究所 编.计算流体力学研究进展: 第七届全国计算流体力学会议论文集[C]. 1994, 1-8.
    [16]
    周伟江, 姜贵庆. 迎风TVD格式在粘性流计算中的应用研究与改进[J].计算物理, 1999,16(4):401-408.
    [17]
    Liou M S. A sequel to AUSM, part Ⅱ: AUSM+-up for all speeds[J].Journal of Computational Physics,2006,214(1): 137-170. doi: 10.1016/j.jcp.2005.09.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3498) PDF downloads(804) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return