WANG Fang-lei, AN Yu-kun. Triple Positive Doubly Periodic Solutions of a Nonlinear Telegraph System[J]. Applied Mathematics and Mechanics, 2009, 30(1): 83-89.
Citation: WANG Fang-lei, AN Yu-kun. Triple Positive Doubly Periodic Solutions of a Nonlinear Telegraph System[J]. Applied Mathematics and Mechanics, 2009, 30(1): 83-89.

Triple Positive Doubly Periodic Solutions of a Nonlinear Telegraph System

  • Received Date: 2007-12-10
  • Rev Recd Date: 2008-11-11
  • Publish Date: 2009-01-15
  • There exist at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, using the Green function and maximum principle, the existence of solutions of nonlinear telegraph system was equivalent to the existence of fixed points of an operator. Finally, imposing growth conditions on the nonlinearities, the existence of at least three fixed points in cone was obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces, namely, there exist at least three positive doubly periodic solutions of the nonlinear telegraph system.
  • loading
  • [1]
    Fucik S, Mawhin J.Generated periodic solution of nonlinear telegraph equation[J].Nonlinear Anal,1978, 2(5):609-617. doi: 10.1016/0362-546X(78)90008-1
    [2]
    Kim W S.Doubly-periodic boundary value problem for nonlinear dissipative hyperbolic equations[J].J Math Appl, 1990,145(1):1-6.
    [3]
    Kim W S.Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations[J].J Math Anal Appl, 1996,197(2):735-748. doi: 10.1006/jmaa.1996.0049
    [4]
    Mawhin J.Periodic solution of nonlinear telegraph equations[A].In:Bedlarek A R,Cesari L,Eds.Dynamical Systems[C].New York:Academic Press,1977.
    [5]
    Ortega R,Robles-Perez A M.A maximum principle for periodic solutions of the telegraph equations[J]. J Math Anal Appl, 1998,221(2):625-651. doi: 10.1006/jmaa.1998.5921
    [6]
    Berkovits J,Mustonuen V.On nonresonance for system of semilinear wave equations[J].Nonlinear Anal, 1997, 29(6):627-638. doi: 10.1016/S0362-546X(96)00067-3
    [7]
    An Y.Periodic solutions of telegraph-wave coupled system at nonresonance[J].Nonlinear Anal, 2001, 46(4):525-533. doi: 10.1016/S0362-546X(00)00127-9
    [8]
    Li Y.Positive doubly periodic solutions of nonlinear telegraph equations[J].Nonlinear Anal, 2003,55(3):245-254. doi: 10.1016/S0362-546X(03)00227-X
    [9]
    Wang F,An Y.Nonnegative doubly periodic solutions for nonlinear telegraph system[J].J Math Anal Appl, 2008,338(1):91-100. doi: 10.1016/j.jmaa.2007.05.008
    [10]
    Davis J M,Eloe P W,Henderson J.Triple positive solutions and dependence on high order derivatives[J].J Math Anal Appl, 1999, 237(2):710-720. doi: 10.1006/jmaa.1999.6500
    [11]
    Sun J,Li W.Multiple positive solutions of a discrete difference system[J].Appl Math Comput, 2003,143(2):213-221. doi: 10.1016/S0096-3003(02)00354-5
    [12]
    Leggett R W, Williams L R.Multiple positive fixed points of nonlinear operators on ordered Banach spaces[J].Indiana Univ Math J, 1979, 28(4):673-688. doi: 10.1512/iumj.1979.28.28046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3307) PDF downloads(695) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return