Rajneesh Kumar, Rupender. Elastodynamics of Axi-Symmetric Deformation in Magneto-Micropolar Generalized Thermoelastic Medium[J]. Applied Mathematics and Mechanics, 2009, 30(1): 40-50.
Citation: Rajneesh Kumar, Rupender. Elastodynamics of Axi-Symmetric Deformation in Magneto-Micropolar Generalized Thermoelastic Medium[J]. Applied Mathematics and Mechanics, 2009, 30(1): 40-50.

Elastodynamics of Axi-Symmetric Deformation in Magneto-Micropolar Generalized Thermoelastic Medium

  • Received Date: 2008-04-10
  • Rev Recd Date: 2008-10-15
  • Publish Date: 2009-01-15
  • An axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to mechanical or thermal source in a transverse magnetic field is concerned with. Laplace and Hankel transform techniques were used to solve the problem. To illustrate the application of approach, two different type of sources i. e., concentrated force and thermal source over the circular region were considered. The integral transforms were inverted by using a numerical technique to obtain the components of stresses, temperature distribution and induced electric and magnetic fields. The expressions of these quantities were illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i. e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). A particular interesting case was also deduced.
  • loading
  • [1]
    Eringen A C. Linear theory of micropolar elasticity[J].J Math Mech, 1966,15(6):909-923.
    [2]
    Eringen A C. Theory of micropolar fluids[J].J Math Mech,1966,15(1):1-18.
    [3]
    Eringen A C. Nonlocal polar field theories[A]. In:Eringen A C, Ed.Continuum Physics[C]. Vol 4.New York:Academic Press, 1976, 205-267.
    [4]
    Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J].J Mech Phys Solid,1967,15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [5]
    Muller I M. The coldness, a universal function in thermoelastic bodies[J].Arch Ration Mech Anal,1971,41(5):319-332.
    [6]
    Green A E, Laws N. On the entropy production inequality[J].Arch Ration Mech Anal,1972,45(1):47-53.
    [7]
    Green A E, Lindsay K A. Thermoelasticity[J].Elasticity,1972,2(1):1-7. doi: 10.1007/BF00045689
    [8]
    Suhubi E S. Thermoelastic solids[A].Part 2, Chapter 2. In:Eringen A C Ed.Continuum Physics[C]. Vol 2.New York:Academic Press, 1975.
    [9]
    Kaliski S. Thermo-magneto-microelasticity[J].Bull Acad Polon Sci Sr Sci Tech,1968,16(1):7-12.
    [10]
    Nowacki W. Some problems of micropolar magneto-elasticity[J].Proc Vibr Probl,1971,12:105-203.
    [11]
    Kumar R, Choudhary S. Axi-symmetric problem in time harmonic sources in micropolar elastic medium[J].Ind J Pure and Appl Math,2002,33:1169-1182.
    [12]
    Kumar R, Deswal S.Axi-symmetric problem in a generalized micropolar thermoelastic half-space[J].Internat J Appl Mech and Eng,2007,12(2):413-429.
    [13]
    Honig G, Hirdes U. A method for the numerical inversion of Laplace transform[J]. Comput and Appl Math,1984,10(1):113-132. doi: 10.1016/0377-0427(84)90075-X
    [14]
    Press W H, Teukolshy S A, Vellerling W T,et al.Numerical Recipes in FORTRAN[M].2nd Ed. Cambridge:Cambridge University Press, 1986.
    [15]
    Eringen A C.Plane wave in nonlocal micropolar elasticity[J].Internat J Eng Sci, 1984,22(8/10):1113-1121. doi: 10.1016/0020-7225(84)90112-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2963) PDF downloads(573) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return