DING Xie-ping, WANG Zhong-bao. System of Set-Valued Mixed Quasi-Variational-Like Inclusions Involving H-eta-Monotone Operators in Banach Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(1): 1-14.
Citation: DING Xie-ping, WANG Zhong-bao. System of Set-Valued Mixed Quasi-Variational-Like Inclusions Involving H-eta-Monotone Operators in Banach Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(1): 1-14.

System of Set-Valued Mixed Quasi-Variational-Like Inclusions Involving H-eta-Monotone Operators in Banach Spaces

  • Received Date: 2008-08-18
  • Rev Recd Date: 2008-12-02
  • Publish Date: 2009-01-15
  • A new system of set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-eta-monotone operators is introduced and studied in general Banach spaces without uniform smoothness. By using the resolvent operator technique of H-eta-monotone operators, a new iterative algorithm for finding the approximation solutions of the SSMQVLI was suggested and analyzed. It was also proved that the iterative sequences generated by the algorithm converge strongly to the exact solution of the SSMQVLI under suitable assumptions. These results are new, and extend and improve the corresponding results in this field.
  • loading
  • [1]
    Browder F E.Fixed point theory and Nonlinear problems[A].In:Browder F E Ed.Proc Symp Pure Math[C].39.Providence,Rhode Island:American Math Soc,1980,49-87.
    [2]
    Gorniewicz L.Topoligical Fixed Point Theory of Multivalued Mapping[M].Berlin:Springer-Verlag,2006.
    [3]
    Ding X P,Lou C L.Perturbed proximal point algorithm for generalized quasi-variational-like inclusions[J].J Comput Appl Math,2000,113(1/2):153-165. doi: 10.1016/S0377-0427(99)00250-2
    [4]
    Huang N J,Fang Y P.A new class of generalized variational inclusions involving maximal η[KG5]. -monotone mappings[J].Publ Math Debrecen,2003,62(1/2):83-98.
    [5]
    Fang Y P,Huang N J.H-monotone operator and resolvent operator technique for variational inclusions[J]. Appl Math Comput,2003,145(2/3):795-803. doi: 10.1016/S0096-3003(03)00275-3
    [6]
    Fang Y P,Huang N J,Thompson H B.A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces[J].Comput Math Appl,2005,49(2/3):365-374. doi: 10.1016/j.camwa.2004.04.037
    [7]
    Verma R U.Generalized nonlinear variational inclusion problems involving A-monotone mappings[J].Appl Math Lett,2006,19(9):960-963. doi: 10.1016/j.aml.2005.11.010
    [8]
    Verma R U.Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J].Appl Math Lett,2006,19(12):1409-1413. doi: 10.1016/j.aml.2006.02.014
    [9]
    Zhang Q B.Generalized implicit variational-like inclusion problems involving G[KG5]. -η[KG5]. -monotone mappings[J].Appl Math Lett,2007,20(2):216-221.
    [10]
    Lou J,He X F,He Z.Iterative methods for solving a system of variational inclusions involving H-η[KG5]. -monotone operators in Banach spaces[J].Comput Math Appl,2008,55(7):1532-1541.
    [11]
    Feng H R,Ding X P.A new system of generalized nonlinear quasi-variational-like inclusions with A-monotone operators in Banach spaces[J].J Comput Appl Math.DOI: 10.1016/j.cam.2008.07.048.
    [12]
    Lan H Y,Cho Y J,Verma R U.Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces[J].Comput Math Appl,2006,51(9/10):1529-1538. doi: 10.1016/j.camwa.2005.11.036
    [13]
    Lan H Y.(A,η)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces[J].Appl Math Lett,2007,20(5):571-577. doi: 10.1016/j.aml.2006.04.025
    [14]
    Peng J W.On a new system of generalized mixed quasi-variational-like inclusions with (H,η)-accretive operators in real q[KG*5]. -uniformly smooth Banach spaces[J].Nonlinear Anal,2008,68(4):981-993.
    [15]
    Peng J W.Set-valued variational inclusions with T-accretive operators in Banach spaces[J].Appl Math Lett,2006,19(3):273-282 . doi: 10.1016/j.aml.2005.04.009
    [16]
    Peng J W,Zhu D L.A new system of generalized mixed quasi-vatiational inclusions with (H,η)-monotone operators[J].J Math Anal Appl,2007,327(10):175-187. doi: 10.1016/j.jmaa.2006.04.015
    [17]
    Fang Y P,Huang N J.H-monotone operators and system of variational inclusions[J].Common Appl Nonlinear Anal,2004,11(1):93-101.
    [18]
    Lan H Y,Kim J H,Cho Y J.On a new system of nonlinear A-monotone multivalued variational inclusions[J].J Math Anal Appl,2007,327(1):481-493. doi: 10.1016/j.jmaa.2005.11.067
    [19]
    Verma R U.General system of (A,η)-monotone variational inclusion problems based on generalized hybrid iterative algorithm[J].Nonlinear Analysis:Hybrid Systems,2007,1(3):326-335. doi: 10.1016/j.nahs.2006.07.002
    [20]
    Lan H Y.New Proximal algorithms for a class of (A,η)-accretive variational inclusion problems with non-accretive set-valued mapping[J].J Appl Math Comput,2007,25(1/2) 255-267.
    [21]
    Yan W Y,Fang Y P,Huang N J.A new system of set-valued variational inclusions with H-monotone operators[J]. Math Inequal Appl,2005,8(3):537-546.
    [22]
    Cho Y J,Fang Y P,Huang N J.Algorithms for systems of nonlinear variational inequalities[J]. J Korean Math Soc,2004,41(2):489-499. doi: 10.4134/JKMS.2004.41.3.489
    [23]
    Kazmi K R,Khan F A.Iterative approximation of a solution of multi-valued variational-like inclusion in Banach spaces:A P-η[KG5]. -proximal-point mapping approach[J]. J Math Anal Appl,2007,325(1):665-674.
    [24]
    Ding X P.Perturbed Ishikawa type iterative algorithm for generalized quasivariational inclusions[J].Appl Math Comput,2003,141(2/3):359-373. doi: 10.1016/S0096-3003(02)00261-8
    [25]
    Ding X P,Feng H R.The p-step iterative algorithm for a system of generalized mixed quasi-variational inclusions with (A,η)-accretive operators in q-uniformly smooth banach spaces[J].J Comput Appl Math,2008,220(1/2):163-174. doi: 10.1016/j.cam.2007.08.003
    [26]
    Kazmi K P,Khan F A.Iterative approximation of a unique solution of a system of vatiational-like inclusions in real q- uniformly smooth Banach spaces[J].Nonlinear Anal,2007,67(3):917-929. doi: 10.1016/j.na.2006.06.049
    [27]
    Peng J W,Zhu D L.Three-step iterative algorithm for a system of set-valued variational inclusions with (H,η)-monotone operators[J].Nonlinear Anal,2008,68(1):139-153. doi: 10.1016/j.na.2006.10.037
    [28]
    Zeng L C. An iterative method for generalized nonlinear set-valued mixed quasi-variational inequalities with H-monotone mappings[J].Comput Math Appl,2007,54(4):476-483. doi: 10.1016/j.camwa.2007.01.025
    [29]
    Ding X P,Yao J C,Existence and algorithm of solutions for mixed quasi-variationallike inclusions in Banach spaces[J].Comput Math Appl,2005,49(5/6):857-869.
    [30]
    Schaible S,Yao J C,Zeng L C.A proximal method for pseudomonotone type variational-like inequalities[J].Taiwanese Journal of Mathematics,2006,10(2):497-513.
    [31]
    Zeng L C,Guu S M,Yao J C.Three-step iterative algorithms for solving the system of generalized mixed quasi-variational-like inclusions[J].Comput Math Appl,2007,53(10):1572-1581. doi: 10.1016/j.camwa.2006.05.024
    [32]
    Zeng L C,Wu S Y,Yao J C.New accuracy criteria for modified approximate proximal point algorithms in Hilbert space[J].Taiwanese Journal of Mathematics,2008,12(4):1691-1705.
    [33]
    Zeng L C,Yao J C.Mixed projection methods for systems of variational inequalities[J].Journal of Global Optimization,2008,41(3):465-478. doi: 10.1007/s10898-007-9258-6
    [34]
    Ding X P,Yao J C,Zeng L C.Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces[J].Comput Math Appl,2008,55(4):669-679. doi: 10.1016/j.camwa.2007.06.004
    [35]
    Petryshyn W V.A characterization of strict convexity of Banach spaces and other uses of duality mappings[J].J Funct Anal,1970,6(2):282-291. doi: 10.1016/0022-1236(70)90061-3
    [36]
    Nadler S B.Multivalued contraction mapping[J].Pacific J Math,1969,30(2):475-488.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2578) PDF downloads(810) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return