Citation: | LI Ming-jun, YANG Yu-yue, SHU Shi. Third-Order Modified Coefficient Scheme Based on the Essentially Non-Oscillatory Scheme[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1337-1346. |
[1] |
Harten A,Engquist B,Osher S,et al.Uniformly high order accurate essentially non-oscillatory schemes Ⅲ[J].J Comput Phys,1987,71:231-303;ICASE Report No 86-22, April 1986. doi: 10.1016/0021-9991(87)90031-3
|
[2] |
Liu X-D,Osher S. Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids[J].J Comput Phys,1998,142(2):304-330. doi: 10.1006/jcph.1998.5937
|
[3] |
Liu X-D,Osher S,Chan T. Weighted essentially non-oscillatory schemes[J].J Comput Phys,1994,115(1):200-212. doi: 10.1006/jcph.1994.1187
|
[4] |
Shu C-W,Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].J Comput Phys,1988,77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
|
[5] |
Shu C-W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes Ⅱ[J].J Comput Phys,1989,83(1):32-78. doi: 10.1016/0021-9991(89)90222-2
|
[6] |
Jiang G-S,Shu C-W. Efficient implementation of weighted ENO schemes[J].J Comput Phys,1996,126:202-228. doi: 10.1006/jcph.1996.0130
|
[7] |
高智.摄动有限研究进展[J].力学进展,2000,30(2):200-215.
|
[8] |
Gao Z,YANG G W. Perturbation finite volume method for convective-diffusion integral equation[J].Acta Mechanica Sinica,2004,20(6):580-590. doi: 10.1007/BF02485861
|
[9] |
高智,柏威. 对流扩散方程的摄动有限体积(PFV)方法及讨论[J].力学学报,2004,36(1):88-93.
|
[10] |
Glimm J,Grove J,LI X,et al.The dynamics of bubble growth for Rayleigh-Taylor unstable interface[J].Physics of Fluids,1988,31:447-465. doi: 10.1063/1.866826
|
[11] |
Xu Z F,Shu C W.Anti-diffusive flux corrections for high order finite difference WENO schemes[J].J Comput Phys,2005,205(2):458-485. doi: 10.1016/j.jcp.2004.11.014
|