HUANG Yu-ning, MA Hui-yang. The Extended Intrinsic Mean Spin Tensor for Turbulence Modelling in a Non-Inertial Frame of Reference[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1325-1336.
Citation: HUANG Yu-ning, MA Hui-yang. The Extended Intrinsic Mean Spin Tensor for Turbulence Modelling in a Non-Inertial Frame of Reference[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1325-1336.

The Extended Intrinsic Mean Spin Tensor for Turbulence Modelling in a Non-Inertial Frame of Reference

  • Received Date: 2008-06-10
  • Rev Recd Date: 2008-10-05
  • Publish Date: 2008-11-15
  • The role of the extended intrinsic mean spin tensor introduced for turbulence modelling in a non-inertial frame of reference which is described by the Euclidean group of transformations and, in particular, its significance and importance in the approach of the algebraic Reynolds stress modelling, such as in a nonlinear Kepsilon model is investigated. To this end and for illustration of the effect of the extended intrinsic spin tensor on turbulence modelling, several recently developed nonlinear Kepsilon models were examined and their performance in predicting the homogeneous turbulent shear flow in a rotating frame of reference with the LES data was compared. The results and analysis indicate that only if the deficiencies of these models and the like be well understood in detail and be properly corrected, may in the near future more sophisticated nonlinear Kepsilon models be developed to better predict the complex turbulent flows in a non-inertial frame of reference.
  • loading
  • [1]
    Lumley J L.Toward a turbulent constitutive equation[J].Journal of Fluid Mechanics,1970,41:413-434. doi: 10.1017/S0022112070000678
    [2]
    Lumley J L.Computational modeling of turbulent flows[J].Advances in Applied Mechanics,1978,18:123-176.
    [3]
    Launder B E,Tselepidakis D P,Younis B A.A second-moment closure study of rotating channel flow[J].Journal of Fluid Mechanics,1987,183:63-75. doi: 10.1017/S0022112087002520
    [4]
    Speziale C G,Gatski T B,Mac Giolla Mhuiris N.A critical comparison of turbulence models for homogeneous shear flows in a rotating frame[J].Physics of Fluids A,1990,2(9):1678-1684. doi: 10.1063/1.857575
    [5]
    Kristoffersen R,Andersson H.Direct simulation of low-Reynolds-number turbulent flow in a rotating channel[J].Journal of Fluid Mechanics,1993,256:163-197. doi: 10.1017/S0022112093002757
    [6]
    Gatski T B,Speziale C G.On explicit algebraic models for complex turbulent flows[J].Journal of Fluid Mechanics,1993,254:59-78. doi: 10.1017/S0022112093002034
    [7]
    Jongen T,Mompean G,Gatski T B.Accounting for Reynolds stress and dissipation rate anisotropies in inertial and non-inertial frames[J].Physics of Fluids,1998,10(3):674-684. doi: 10.1063/1.869593
    [8]
    Nagano Y,Hattori H.An improved turbulence model for rotating shear flows[J].Journal of Turbulence,2002,3(6):1-14. doi: 10.1088/1468-5248/3/1/001
    [9]
    Nagano Y,Hattori H. Direct numerical simulation and modelling of spanwise rotating channel flow with heat transfer[J].Journal of Turbulence,2003,4(10):1-15.
    [10]
    Yoshizawa A,Nisizima S,Shimomura Y,et al.A new methodology for Reynolds-averaged modeling based on the amalgamation of heuristic-modeling and turbulence-theory methods[J].Physics of Fluids,2006,18(3),035109.DOI: 10.106311.2186669.
    [11]
    Chou P Y.On velocity correlations and the solution of the equations of turbulent motion[J].Quarterly of Applied Mathematics,1945,3:38-54.
    [12]
    Huang Y N,Ma H Y.Reynolds stress model involving the mean spin tensor[J].Physical Review E,2004,70(5):036302. doi: 10.1103/PhysRevE.70.036302
    [13]
    Tavoularis S,Corrsin S. Experiments in nearly homogeneous turbulent shear flow with a uniform temperature gradient Parts 1 and 2[J].Journal of Fluid Mechanics,1981,104:311-367. doi: 10.1017/S0022112081002930
    [14]
    Craft T J, Launder B E, Suga K. Development and application of a cubic eddy-viscosity model of turbulence[J].International Journal of Heat and Fluid Flow,1996,17(2):108-115. doi: 10.1016/0142-727X(95)00079-6
    [15]
    Shih T H,Zhu J,Liou W,et al.Modeling of turbulent swirling flows[A].In:Proceedings of 11th Symposium on Turbulent Shear Flows[C].Grenoble,France,1997,31.1-31.6.
    [16]
    Bardina J,Ferziger J H,Reynolds W C.Improved turbulence models based on large-eddy simulation of homogeneous,incompressible turbulent flows[R]. Tech.Report TF-19,Stanford,California:Stanford University,1983.
    [17]
    Truesdell C,Noll W.The non-Linear field theories of mechanics[A].In:Flügge S,Truesdell C,Eds.Handbuch der Physik[C].vol Ⅲ/3.Berlin:Springer-Verlag 1965.
    [18]
    Huang Y N,Durst F.Reynolds stress under a change of frame of reference[J].Physical Review E,2001,63(5):056305. doi: 10.1103/PhysRevE.63.056305
    [19]
    Speziale C G.Turbulence modeling in noninertial frames of reference[J].Theoretical and Computational Fluid Dynamics,1989,1(1):3-19.
    [20]
    Gatski T B,Wallin S.Extending the weak-equilibrium condition for algebraic Reynolds stress models to rotating and curved flows[J].Journal of Fluid Mechanics,2004,518:147-155. doi: 10.1017/S0022112004000837
    [21]
    Speziale C G,Mac Giolla Mhuiris N.On the prediction of equilibrium states in homogeneous turbulence[J].Journal of Fluid Mechanics,1989,209:591-615. doi: 10.1017/S002211208900323X
    [22]
    Speziale C G,Sarkar S,Gatski T B.Modelling the pressure-strain correlation of turbulence:an invariant dynamical systems approach[J].Journal of Fluid Mechanics,1991,227:245-272. doi: 10.1017/S0022112091000101
    [23]
    Pope S B.A more general effective-viscosity hypothesis[J].Journal of Fluid Mechanics,1975,72:331-340. doi: 10.1017/S0022112075003382
    [24]
    Huang Y N.A note on the “principle of material frame-indifference in the limit of two-dimensional turbulence”[J].Communications in Nonlinear Science and Numerical Simulation,2006,11(1):854-860. doi: 10.1016/j.cnsns.2004.12.012
    [25]
    Lumley J L.Turbulence modeling[J].ASME Journal of Applied Mechanics,1983,50:1097-1103. doi: 10.1115/1.3167192
    [26]
    Huang Y N.On modelling the Reynolds stress in the context of continuum mechanics[J].Communications in Nonlinear Science and Numerical Simulation,2004,9(5):543-559. doi: 10.1016/S1007-5704(03)00007-8
    [27]
    Huang Y N,Ma H Y,Chu H J.Modelling turbulent swirling flows based on the approach of two-equation K-ε approach[J].International Journal for Numerical Methods in Fluids,2006,51(3):285-304. doi: 10.1002/fld.1123
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3481) PDF downloads(716) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return