Citation: | LÜ Cun-jing, YIN Ya-jun, ZHENG Quan-shui. Nonlinear Effects of Line Tension in Adhesion of Small Droplets[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1135-1146. |
[1] |
Boal D.Mechanics of the Cell[M].Cambridge:Cambridge University Press,2002.
|
[2] |
Seifert U.Configurations of fluid membranes and vesicles[J].Adv Phys,1997,46(1):13-137. doi: 10.1080/00018739700101488
|
[3] |
Lipowsky R,Lenz P,Swain P S.Wetting and dewetting of structured and imprinted surfaces[J].Colloids Surf,A,2000,161(1):3-22. doi: 10.1016/S0927-7757(99)00321-0
|
[4] |
de Gennes P G.Wetting:statics and dynamics[J].Rev Mod Phys,1985,57(3):827-863. doi: 10.1103/RevModPhys.57.827
|
[5] |
Sackmann E.Supported membranes[J].Scientific and Practical Applications Science,1996,271(5245):43-48.
|
[6] |
Nealey P F,Black A J,Wilbur J L,et al.Molecular Electronics[M].Oxford:Blackwell Science,1997.
|
[7] |
Liu X H,Ross F M,Schwarz K W.Dislocated epitaxial islands[J].Phys Rev Lett,2000,85(19):4088-4091. doi: 10.1103/PhysRevLett.85.4088
|
[8] |
Mendez-Villuendas E,Bowles R K.Surface nucleation in the freezing of gold nanoparticles[J].Phys Rev Lett,2007,98(18):185503. doi: 10.1103/PhysRevLett.98.185503
|
[9] |
Peters R,Yang X,Kim T,et al.Using self-assembled monolayers exposed to X-rays to control the wetting behavior of thin films of diblock copolymers[J].Langmuir,2000,16(10):4625-4631. doi: 10.1021/la991500c
|
[10] |
Lopes W,Jaeger H.Lopes-hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds[J].Nature,2001,414(6865):735-738. doi: 10.1038/414735a
|
[11] |
Whitesides G,Stroock A.Flexible methods for microfluidics[J].Phys Today,2001,54(6):42-48.
|
[12] |
Zheng Q S,Yu Y,Zhao Z H.Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces[J].Langmuir,2005,21(26):12207-12212. doi: 10.1021/la052054y
|
[13] |
Gibbs J W.The Scientific Papers[M].New York:Dover,1961.
|
[14] |
Yutaka S,Nobuyuki M,Tsutomu H,et al.Self-running droplet:emergence of regular motion from nonequilibrium noise[J].Phys Rev Lett,2005,94(6):068301. doi: 10.1103/PhysRevLett.94.068301
|
[15] |
Drelich J.The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems[J].Colloids Surf,A,1996,116(1/2):43-54. doi: 10.1016/0927-7757(96)03651-5
|
[16] |
Li D.Drop size dependence of contact angles and line tensions of solid-liquid systems[J].Colloids Surf,A,1996,116(1/2):1-23. doi: 10.1016/0927-7757(96)03582-0
|
[17] |
Li D,Steigmann D J.Positive line tension as a requirement of stable equilibrium[J].Colloids Surf,A,1996,116(1/2):25-30. doi: 10.1016/0927-7757(96)03583-2
|
[18] |
Amirfazli A,Neumann A W.Status of the three-phase line tension:a review[J].Advance in Colloid and Interface Science,2004,110(3):121-141. doi: 10.1016/j.cis.2004.05.001
|
[19] |
Widom B.Line tension and the shape of a sessile drop[J].J Phys Chem,1995,99(9):2803-2806. doi: 10.1021/j100009a041
|
[20] |
Rosso R,Virga E G.Local stability for a general wetting functional[J].J Phys A:Math Gen,2004,37(13):3989-4015. doi: 10.1088/0305-4470/37/13/006
|
[21] |
Guzzardi L,Rosso R.Sessile droplets on a curved substrate:effects of line tension[J].J Phys A:Math Theor,2007,40(1):19-46. doi: 10.1088/1751-8113/40/1/002
|
[22] |
Rosso R,Virga E G.General stability criterion for wetting[J].Phys Rev E,2003,68(1):012601. doi: 10.1103/PhysRevE.68.012601
|
[23] |
Guzzardi L,Rosso R,Virga E G.Residual stability of sessile droplets with negative line tension[J].Phys Rev E,2006,73(2):021602. doi: 10.1103/PhysRevE.73.021602
|
[24] |
Rosso R,Virga E G.Sign of line tension in liquid bridge stability[J].Phys Rev E,2004,70(3):031603. doi: 10.1103/PhysRevE.70.031603
|
[25] |
Lenz P,Lipowsky R.Morphological transitions of wetting layers on structured surfaces[J].Phys Rev Lett,1998,80(9):1920-1923. doi: 10.1103/PhysRevLett.80.1920
|
[26] |
Blecua P,Lipowsky R,Kierfeld J.Line tension effects for liquid droplets on circular surface domains[J].Langmuir,2006,22(26):11041-11059. doi: 10.1021/la0609773
|
[27] |
Brinkmann M,Kierfeld J,Lipowsky R.A general stability criterion for droplets on structured substrates[J].J Phys A:Math Gen,2004,37(48):11547-11573. doi: 10.1088/0305-4470/37/48/003
|
[28] |
Swain P S,Lipowsky R.Contact angles on heterogeneous surfaces:a new look at Cassie's and Wenzel's laws[J].Langmuir,1998,14(23):6772-6780. doi: 10.1021/la980602k
|
[29] |
Pompe T,Herminghaus S.Three-phase contact line energetics from nanoscale liquid surface topographies[J].Phys Rev Lett,2000,85(9):1930-1933. doi: 10.1103/PhysRevLett.85.1930
|
[30] |
Baumgart T,Hess S T,Webb W W.Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[J].Nature,2003,425(6960):821-824. doi: 10.1038/nature02013
|
[31] |
Akimov S A,Kuzmin P I,Zimmerberg J,et al.An elastic theory for line tension at a boundary separating two lipid monolayer regions of different thickness[J].J Electroanalytical Chemistry,2004,564:13-18. doi: 10.1016/j.jelechem.2003.10.030
|
[32] |
Kang K H,Kang Is,Lee C M.Electrostatic contribution to line tension in a wedge-shaped contact region[J].Langmuir,2003,19(22):9334-9342. doi: 10.1021/la034539x
|
[33] |
Churaev N V,Starov V M,Derjaguin B V.The shape of the transition zone between a thin film and bulk liquid and the line tension[J].J Colloid Interface Sci,1982,89(1):16-24.[JP2]. Sagis L M C,Slattery J C.Incorporation of line quantities in the continuum description for muitiphase,multiphase,multicomponent bodies with intersecting dividing surfaces—Ⅲ Determination of line tension and fluid-solid surface tensions using small sessile drops[J].J Colloid Interface Sci,1995,176(1):173-182. doi: 10.1006/jcis.1995.0020
|
[35] |
Hoorfar M,Amirfazli A,Gaydos J A,et al.The effects of line tension on the shape of liquid menisci near stripwise heterogeneous walls[J].Advances in Colloid and Interface Science,2005,114/115:103-118. doi: 10.1016/j.cis.2004.06.004
|
[36] |
Bier M,Chen W,Gowrishankar T R,et al.Resealing dynamics of a cell membrane after electroporation[J].Phys Rev E,2002,66(6):062905. doi: 10.1103/PhysRevE.66.062905
|
[37] |
Pompe T.Line tension behavior of a first-order wetting system[J].Phys Rev Lett,2002,89(7):076102. doi: 10.1103/PhysRevLett.89.076102
|
[38] |
Aiwei T,Johnson C,Wang Z W,et al.Line tension at fluid membrane domain boundaries measured by micropipette aspiration[J].Phys Rev Lett,2007,98(20):208102. doi: 10.1103/PhysRevLett.98.208102
|
[39] |
Drelich J,Wilbur J L,Miller J D,et al.Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips[J].Langmuir,1996,12(7):1913-1922. doi: 10.1021/la9509763
|
[40] |
Yongan G.Drop size dependence of contact angles of oil drops on a solid surface in water[J].Colloids Surf A,2001,181(1/3):215-224. doi: 10.1016/S0927-7757(00)00804-9
|
[41] |
Amirfazli A,Keshavarz A,Zhang L,et al.Determination of line tension for systems near wetting[J].J Colloid Interface Sci,2003,265(1):152-160. doi: 10.1016/S0021-9797(03)00521-6
|
[42] |
Chen P,Susnar S S,Amirfazli A,et al.Line tension measurements:an application of the quadrilateral relation to a liquid lens system[J].Langmuir,1997,13(11):3035-3042. doi: 10.1021/la961077x
|
[43] |
Rodrigues J F,Saramago B,Fortes M A.Apparent contact angle and triple-line tension of a soap bubble on a substrate[J].J Colloid Interface Sci,2001,239(2):577-580. doi: 10.1006/jcis.2001.7578
|
[44] |
Vera-Graziano R,Muhl S,Rivera-Torres F.The effect of illumination on contact angles of pure water on crystalline silicon[J].J Colloid Interface Sci,1995,170(2):591-597. doi: 10.1006/jcis.1995.1139
|
[45] |
Amirfazli A,Chatain D,Neumann A W.Drop size dependence of contact angles for liquid tin on silica surface:line tension and its correlation with solid-liquid interfacial tension[J].Colloid Surf A,1998,142(2/3):183-188. doi: 10.1016/S0927-7757(98)00265-9
|
[46] |
Wang J Y,Betelu S,Law B M.Line tension effects near first-order wetting transitions[J].Phys Rev Lett,1999,83(18):3677-3680. doi: 10.1103/PhysRevLett.83.3677
|
[47] |
Dussaud A,Vignes-Adler M.Wetting transition of n-alkanes on concentrated aqueous salt solutions,line tension effect[J].Langmuir,1997,13(3):581-589. doi: 10.1021/la951508w
|
[48] |
Stckelhuber K W,Radoev B,Schulze H J.Some new observations on line tension of microscopic droplets[J].Colloids Surf A,1999,156(1/3):323-333. doi: 10.1016/S0927-7757(99)00084-9
|
[1] | QI Zihan, WU Zhiqiang, JIAO Yunlei, JIA Wenwen. Beat Vibration of X-Configuration Tension Nonlinear Systems Under Resonance Excitation[J]. Applied Mathematics and Mechanics, 2022, 43(6): 597-607. doi: 10.21656/1000-0887.420326 |
[2] | YANG Yonglin, WANG Xu, LI Xing. Effects of Proplet on the Deformation of Elastic Gradient Thin Substrate[J]. Applied Mathematics and Mechanics, 2021, 42(1): 58-70. doi: 10.21656/1000-0887.410175 |
[3] | XU Xiao-ming, ZHONG Wan-xie. Nonlinear Numerical Simulation of Rotor Dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(7): 677-685. doi: 10.3879/j.issn.1000-0887.2015.07.001 |
[4] | MA Gang, SUN Li-ping, AI Shang-mao, WANG Hong-wei. A Nonlinear Mechanical Model for Extensible Slender Rods[J]. Applied Mathematics and Mechanics, 2015, 36(4): 371-377. doi: 10.3879/j.issn.1000-0887.2015.04.004 |
[5] | ZHAO Jian, ZHANG Guo-ce, CHEN Li-qun. Multi-Scale Analysis of Piezoelectric Energy Harvesters With Magnetic Oscillators[J]. Applied Mathematics and Mechanics, 2015, 36(8): 805-813. doi: 10.3879/j.issn.1000-0887.2015.08.002 |
[6] | LUO Li-ping, YU Yuan-hong, ZENG Yun-hui. New Criteria for Oscillation of Third Order Nonlinear Delay Differential Equations[J]. Applied Mathematics and Mechanics, 2013, 34(9): 941-947. doi: 10.3879/j.issn.1000-0887.2013.09.007 |
[7] | GAO Shi-qiao, JIN Lei, M. Kasperski, LIU Hai-peng, LI Ming-hui. Nonlinear Analysis of a Structure Loaded by a Stochastic Excitation[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1318-1324. |
[8] | ZHOU Xing-de, CHEN Dao-zheng. Active Vibration Control of Nonlinear Benchmark Buildings[J]. Applied Mathematics and Mechanics, 2007, 28(4): 441-446. |
[9] | YUAN Yi-rang, DU Ning, WANG Wen-qia, HAN Yu-ji, YANG Cheng-shun. Numerical Method and Application for the Three-Dimensional Nonlinear System of Dynamics of Fluids in Porous Media[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1319-1328. |
[10] | ZHOU Ping, WU Cheng-wei, MA Guo-jun. Squeeze Film Flow With Nonlinear Boundary Slip[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1129-1134. |
[11] | WANG Zhong-gang, CHENG Hua, DENG Hong-zhou. Path Integral Solution of the Nonlinear Dynamic Behavior of Structure Under Wind Excitation[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1183-1190. |
[12] | HE Ji-huan. Linearization and Correction Method for Nonlinear Problems[J]. Applied Mathematics and Mechanics, 2002, 23(3): 221-228. |
[13] | Guo Xingming. The Existence of Solutions in Nonlinear Elastodynamics[J]. Applied Mathematics and Mechanics, 1997, 18(3): 223-229. |
[14] | Chang Fuqing, Xu Yaoling, Bai Xiangzhong. Nonlinear Problems of Current-Carrying Round Plates with Varying Thickness in the Electromagnetic Field[J]. Applied Mathematics and Mechanics, 1997, 18(4): 331-339. |
[15] | Sun Pizhong, Tang Qiangang, Sun Shixian. Nonlinear Oscillation Analysis by an Orthogonal Function Method[J]. Applied Mathematics and Mechanics, 1995, 16(7): 653-661. |
[16] | Nie Guo-hua. Non-Linear Vibration of Rectangular Retlculated Shallow Shell Structures[J]. Applied Mathematics and Mechanics, 1994, 15(6): 495-504. |
[17] | Nie Guo-huai, Liu Ren-huai. Non-Linear Elastic Theory of Rectangular Reticulated Shallow Shell Structures[J]. Applied Mathematics and Mechanics, 1994, 15(5): 389-397. |
[18] | Fu Yi-ming, Liu Xiao-hu. Nonlinear Dynamic Response and Dynamic Buckling of Shallow Spherical Shells with Circular Hole[J]. Applied Mathematics and Mechanics, 1992, 13(2): 145-156. |
[19] | Zhao Wei-li. Singular Perturbation of Boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations on Infinite Interval (Ⅱ)[J]. Applied Mathematics and Mechanics, 1991, 12(11): 1037-1048. |
[20] | Zan Ting-quan, Liu Zong-chao. Study on the Complicated Dynamical Behaviors of Nonlinear Ecosystems(Ⅲ)[J]. Applied Mathematics and Mechanics, 1991, 12(7): 607-612. |