LI Bo, WU Rong. Dividend Function in the Jump-Diffusion Dual Model With Barrier Dividend Strategy[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1124-1134.
Citation: LI Bo, WU Rong. Dividend Function in the Jump-Diffusion Dual Model With Barrier Dividend Strategy[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1124-1134.

Dividend Function in the Jump-Diffusion Dual Model With Barrier Dividend Strategy

  • Received Date: 2007-10-27
  • Rev Recd Date: 2008-08-01
  • Publish Date: 2008-09-15
  • A dual model of the perturbed classical compound Poisson risk model under a constant dividend barrier was considered. A new method is used in deriving the boundary condition of the equation satisfied by that expectation function, by using the local time of a related process. The expression for the expected discounted dividend function was obtained in terms of those in the corresponding perturbed compound Poisson risk model without barrier. The special cases where the gain size is phasetype distributed is illustrated in the last section. Also the existence of the optimal dividend level was considered.
  • loading
  • [1]
    Gerber H U.An extension of the renewal equation and its application in the collective theory of risk[J].Skandinavisk Aktuarietidskrift,1970,(3):205-210.
    [2]
    Gerber H U,Landry B.On the discounted penalty at ruin in a jump-diffusion and the perpetual put option[J].Insurance: Mathematics and Economics,1998,22(3):263-276. doi: 10.1016/S0167-6687(98)00014-6
    [3]
    Chiu S N,Yin C C.The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion[J].Insurance: Mathematics and Economics,2003,33(1):59-66. doi: 10.1016/S0167-6687(03)00143-4
    [4]
    Tsai C C L.On the discounted distribution functions of the surplus process perturbed by diffusion[J].Insurance: Mathematics and Economics,2001,28(3):401-419. doi: 10.1016/S0167-6687(01)00067-1
    [5]
    Zhang C,Wang G.The joint density function of three characteristics on jump-diffusion risk process[J].Insurance: Mathematics and Economics,2003,32(3):445-455. doi: 10.1016/S0167-6687(03)00133-1
    [6]
    De Finetti B.Su un'impostazione alternativa della teoria collettiva del rischio[A].In:Proceedings of the Transactions of the XV International Congress of Actuaries[C].Vol 2.1957,433-443.
    [7]
    Dickson D C M,Waters H.Some optimal dividends problems[J].ASTIN Bulletin,2004, 34(1):49-74. doi: 10.2143/AST.34.1.504954
    [8]
    Gerber H U.On the probability of ruin in the presence of a linear dividend barrier[J].Scandinavian Actuarial Journal,1981,(2):105-115.
    [9]
    Gerber H U,Shiu E S W.Optimal dividends: analysis with Brownian motion[J].North American Actuarial Journal,2004,8(1):1-20.
    [10]
    Li S,Garrido J.On a class of renewal risk models with a constant dividend barrier[J].Insurance:Mathematics and Economics,2004, 35(3):691-701. doi: 10.1016/j.insmatheco.2004.08.004
    [11]
    Lin X S,Willmot G E,Drekic S.The classical risk model with a constant dividend barrier:Analysis of the Gerber-Shiu discounted penalty function[J].Insurance: Mathematics and Economics,2003,33(3):551-566. doi: 10.1016/j.insmatheco.2003.08.004
    [12]
    Avanzi B,Gerber H U,Shiu E S W.Optimal dividend in the dual model[J].Insurance: Mathematics and Economics,2007,41(1):111-123. doi: 10.1016/j.insmatheco.2006.10.002
    [13]
    Karatzas Ioannis, Steven E Shreve.Brownian Motion and Stochastic Calculus[M].New York:Springer-Verlag,1988.
    [14]
    Revuz Daniel,Marc Yor.Continuous Martingales and Brownian Motion[M].Berlin:Springer-Verlag,1991.
    [15]
    Wang G,Wu R.Some distributions for the classical risk processes that is perturbed by diffusion[J].Insurance: Mathematics and Economics,2000,26(1):15-24. doi: 10.1016/S0167-6687(99)00035-9
    [16]
    Wang G.A decomposition of the ruin probability for the risk process perturbed by diffusion[J].Insurance: Mathematics and Economics,2001,28(1):49-59. doi: 10.1016/S0167-6687(00)00065-2
    [17]
    Tsai C C L,Willmot G E.A generalized defective renewal equation for the surplus process perturbed by diffusion[J].Insurance: Mathematics and Economics,2002,30(1):51-66. doi: 10.1016/S0167-6687(01)00096-8
    [18]
    Asmussen S.Ruin Probabilities[M].Singapore:World Scientific Publishing Co Pte Inc,2000.
    [19]
    Asmussen S.Appied Probabilty and Queues[M].New York:Springer-Verlag,2003.
    [20]
    Asmussen S.Stationary distributions for fluid flow models with or without Brownian noise[J].Stochastic Models,1995,11(1):21-49. doi: 10.1080/15326349508807330
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2574) PDF downloads(563) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return