Citation: | WU Wei, XU Dong-po, LI Zheng-xue. Convergence of Gradient Method for Elman Networks[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1117-1123. |
[1] |
Elman J L. Finding structure in time[J].Cognitive Science,1990,14(2):179-211. doi: 10.1207/s15516709cog1402_1
|
[2] |
Tsoi A C, Back A D.Locally recurrent globally feedforward networks:a critical review of architectures[J].IEEE Transactions on Neural Networks,1994,5(2):229-239. doi: 10.1109/72.279187
|
[3] |
WANG De-liang,LIU Xiao-mei,Ahalt S C.On temporal generalization of simple recurrent networks[J].Neural Networks,1996,9(7):1099-1118. doi: 10.1016/0893-6080(96)00034-2
|
[4] |
Kremer S C. On the computational power of Elman-style recurrent net works[J].IEEE Transactions on Neural Networks,1995,6(4):1000-1004. doi: 10.1109/72.392262
|
[5] |
Pham D T,Liu X. Training of elman networks and dynamic system modeling[J].International Journal of Systems Science,1996,27(2):221-226. doi: 10.1080/00207729608929207
|
[6] |
Cartling B.On the implicit acquisition of a context-free grammar by a simple recurrent neural network[J].Neurocomputing,2008,71(7/9):1527-1537. doi: 10.1016/j.neucom.2007.05.006
|
[7] |
LI Xiang,CHEN Zeng-qiang,YUAN Zhu-zhi,et al.Generating chaos by an Elman network[J].IEEE Transactions on Circuits and Systems-Ⅰ,2001,48(9):1126-1131. doi: 10.1109/81.948441
|
[8] |
Ekici S,Yildirim S,Poyraz M.A transmission line fault locator based on Elman recurrent networks[J].Applied Soft Computing,DOI: 10.1016/J.asoc.2008.04.011.
|
[9] |
Neto L B, Coelho P H G,Soares de Mello J C C B,et al.Flow estimation using an Elman networks[A].In:Wunsch D,Ed.Proceedings of 2004 IEEE International Joint Conference on Neural Networks[C].Budapest, Hungary:IEEE Press,2004,831-836.
|
[10] |
Demuth H B, Beale M H, Hagan M T.Neural Network Toolbox User'Sguide[M].atick, MA: The Mathworks Inc, 2007.
|
[11] |
Jesús O D,Hagan M T.Back propagation algorithms for a broad class of dynamic networks[J].IEEE Transactions on Neural Networks,2007,18(1):14-27. doi: 10.1109/TNN.2006.882371
|
[12] |
Williams R J, Zisper D. A learning algorithm for continually runningfully recurrent neural networks[J].Neural Computation,1989,1(2):270-280. doi: 10.1162/neco.1989.1.2.270
|
[13] |
Ku C C, Lee K Y.Diagonal recurrent neural networks for dynamic systems control[J].IEEE Transaction on Neural Networks,1995,6(1):144-156. doi: 10.1109/72.363441
|
[14] |
XU Dong-po,LI Zheng-xue,WU Wei,et al.Convergence of gradient descent algorithm for diagonal recurrent neural networks[A]. In:CUI Guang-zhao,Ed.International Conference on Bio-Inspired Computing: Theories and Applications[C].Zhengzhou,China:IEEE Press,2007.
|
[15] |
Kuan C M, Hornik K, White H.A convergence results for learning inrecurrent neural networks[J].Neural Computation,1994,6(3):420-440. doi: 10.1162/neco.1994.6.3.420
|
[16] |
WU Wei,FNG Guo-rui,LI Zheng-xue,et al.Convergence of an online gradient method for BP neural networks[J].IEEE Transactionson Neural Networks,2005,16(3):533-540. doi: 10.1109/TNN.2005.844903
|
[17] |
WU Wei,SHAO Hong-mei,QU Di. Strong convergence for gradient methods for BP networks training[A].In:ZHAO Ming-sheng,SHI Zhong-zhi,Eds.Proceedings of 2005 International Conference on Neural Networks and Brains[C].Beijing,China:IEEE Press,2005,332-334.
|
[18] |
Gori M, Maggini M.Optimal convergence of on-line back propagation[J].IEEE Transaction on Neural Networks,1996,7(1):251-254. doi: 10.1109/72.478415
|
[19] |
Ortega J,Rheinboldt W.Iterative Solution of Nonlinear Equations in Several Variables[M].New York:Academic Press,1970.
|
[20] |
袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,2001,149.
|