Citation: | HUANG Cheng-biao, LIU Jia. Limit Cycles and Homoclinic Orbits and Their Bifurcation of the Bogdanov-Takens System[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1083-1088. |
[1] |
Perko L M. A global analysis of the Bogdanov-Takens system[J].SIAM J Appl Math,1992,52(4):1172-1192. doi: 10.1137/0152069
|
[2] |
Bogdanov R I. Bifurcation of the limit cycle of a family of plane vector fields[J].Selecta Math Soviet,1981,1:373-387.
|
[3] |
Bogdanov R I. Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues[J].Selecta Math Soviet,1981,1:389-421.
|
[4] |
Takens F. Forced oscillations and bifurcations[J].Applications of Global Analysis I, Comm Math Inst Rijksuniversitat Utrecht, 1974,3:1-59.
|
[5] |
Kuznetsov Y.Elements of Applied Bifurcation Theory[M].Vol 112.New York:Springer-Verlag, 1995.
|
[6] |
WANG Duo, LI Jing,HUANG Min-hai,et al.Unique normal form of Bogdanov-Takens singularities[J].Journal of Differential Equations,2000,163(1):223-238. doi: 10.1006/jdeq.1999.3739
|
[7] |
Iliev Iliya D. On the limit cycles available from polynomial perturbations of the Bogdanov-Takens Hamiltonian[J].Israel Journal of Mathematics,2000,115(1):269-284. doi: 10.1007/BF02810590
|
[8] |
岳喜顺.后继函数法Bogdanov-Takens系统的二次扰动[J]. 应用数学学报,2006,29(5):838-847.
|
[9] |
丰建文. Bogdanov-Takens系统的三次齐扰动[J].数学杂志,2004,24(5):565-569.
|
[10] |
Chan H S Y,Chung K W,Xu Z.A perturbation-incremental method for strongly non-linear oscillators[J].Internat J Non-Linear Mech,1996,31(1):59-72. doi: 10.1016/0020-7462(95)00043-7
|