Citation: | TANG Bo, LI Jun-feng, WANG Tian-shu. Viscous Flow With Free Surface Motion by Least Square Finite Element Method[J]. Applied Mathematics and Mechanics, 2008, 29(7): 855-863. |
[1] |
吕敬,李俊峰,王天舒.带弹性附件充液矩形贮箱俯仰运动动态响应[J].应用数学和力学,2007,28(3):317-327.
|
[2] |
Codina R. Pressure stability in fractional step finite element methods for incompressible flows[J].Journal of Computational Physics,2001,170(1):112-140. doi: 10.1006/jcph.2001.6725
|
[3] |
Jiang B N.The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics[M].Berlin: Springer, 1998.
|
[4] |
Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian mulipliears[J].Mathematical Modeling and Numerical Analysis,1974,8(2):129-151.
|
[5] |
Guermond J L, Quartapelle L.On stability and convergence of projection methods based on pressure Poisson equation[J].International Journal for Numerical Methods in Fluids,1998,26(3):1039-1053. doi: 10.1002/(SICI)1097-0363(19980515)26:9<1039::AID-FLD675>3.0.CO;2-U
|
[6] |
Hauashi M, Hatanaka K,Kawahara M.Lagrangian finite element method for free surface Navier-Stokes flow using fractional step methods[J].International Journal for Numerical Methods in Fluids,1991,13(7):805-840. doi: 10.1002/fld.1650130702
|
[7] |
Oliver K H. Least-squares methods for the solution of fluid-structure interaction problems[D].Germany: TU Braunschweig, 2006.
|
[8] |
Chang C L, Nelson J J.Least-squares finite element method for the stokes problem with zero residual of mass conservation[J].SIAM Journal on Numerical Analysis,1997,34(2):480-489. doi: 10.1137/S0097539794273368
|
[9] |
Deang J M, Gunzburger M D.Issues related to least-squares finite element methods for the Stokes equations[J].SIAM Journal on Scientific Computing,1998,20(3):878-906. doi: 10.1137/S1064827595294526
|
[10] |
Martin J C, Moyce W J.An experimental study of the collapse of liquid columns on a rigid horizontal plane[J].Philosophical Transactions of the Royal Society of London. Ser A, Mathematical and Physical Sciences,1952,244(882):312-324. doi: 10.1098/rsta.1952.0006
|
[1] | MA Jinwei, DUAN Qinglin. Nearly Incompressible Elasto-Plastic Analysis of Extra-DOF-Free Generalized Finite Elements[J]. Applied Mathematics and Mechanics, 2024, 45(2): 220-226. doi: 10.21656/1000-0887.440067 |
[2] | LI Shuguang, QU Kai. Homogenization Modeling of Single-Phase Gas Local Flow in Porous Media[J]. Applied Mathematics and Mechanics, 2024, 45(2): 175-183. doi: 10.21656/1000-0887.440246 |
[3] | XU Yunqing, ZHOU Xiaomin, ZHAO Shiyi, XU Shengfei, SUN Zheng. Simulation Study on Dam Break Flow Based on the B-Spline Material Point Method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 921-930. doi: 10.21656/1000-0887.430363 |
[4] | LI Nianbin, DONG Shiming, HUA Wen. Finite Element Analysis on Mixed-Mode Dynamic Fracture Experiments of Centrally Cracked Brazilian Disks With Crack Face Contact[J]. Applied Mathematics and Mechanics, 2021, 42(7): 704-712. doi: 10.21656/1000-0887.410349 |
[5] | CHEN Yafei, ZHENG Yunying. A Discontinuous Galerkin FEM for 2D Navier-Stokes Equations of Incompressible Viscous Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(8): 844-852. doi: 10.21656/1000-0887.400379 |
[6] | WU Feng, SUN Yan, ZHONG Wan-xie. Inter-Belt Finite Element for the Analysis of Incompressible Material Problems[J]. Applied Mathematics and Mechanics, 2013, 34(1): 1-9. doi: 10.3879/j.issn.1000-0887.2013.01.001 |
[7] | S.Tariverdilo, J.Mirzapour, M.Shahmardani, Gh.Rezazadeh. Free Vibration of Membrane/Bounded Incompressible Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1091-1101. doi: 10.3879/j.issn.1000-0887.2012.09.006 |
[8] | ZHANG Yun-zhang, HOU Yan-ren, WEI Hong-bo. Adaptive Mixed Least Squares Galerkin/Petrov Finite Element Method for the Stationary Conduction Convection Problems[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1182-1198. doi: 10.3879/j.issn.1000-0887.2011.10.005 |
[9] | LUO Yan, FENG Min-fu. Discontinuous Element Pressure Gradient Stabilizations for the Compressible Navier-Stokes Equations Based on Local Projections[J]. Applied Mathematics and Mechanics, 2008, 29(2): 157-168. |
[10] | LUO Zhen-dong, MAO Yun-kui, ZHU Jiang. Petrov-Galerkin Least Squares Mixed Element Method for the Stationary Incompressible Magnetohydrodynamics[J]. Applied Mathematics and Mechanics, 2007, 28(3): 359-368. |
[11] | Gu Haiming, Yang Danping, Sui Shulin, Liu Xinmin. Least-Squares Mixed Finite Element Method for a Class of Stokes Equation[J]. Applied Mathematics and Mechanics, 2000, 21(5): 501-510. |
[12] | YAN Bo, ZHANG Ru-qing. Penalty Finite Element Method for Nonlinear Dynamic Response of Viscous Fluid-Saturated Biphasic Porous Media[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1247-1254. |
[13] | Yan Bo, Liu Zhanfang, Zhang Xiangwei. Finite Element Analysis of Wave Propagation in Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 1999, 20(12): 1235-1244. |
[14] | Lu Dongqiang, Dai Shiqiang, Zhang Baoshan. Hamiltonian Formulation of Nonlinear Water Waves in a Two-Fluid System[J]. Applied Mathematics and Mechanics, 1999, 20(4): 331-336. |
[15] | Guo Ben-yu, Cao Wei-ming. Spectral-Finite Element Method for Compressible Fluid Flow[J]. Applied Mathematics and Mechanics, 1992, 13(8): 677-692. |
[16] | Chen Da-peng, Zhao Zhong. A Weighted Penalty Finite Element Method for the Analysis of Power-Law Fluid Flow Problems[J]. Applied Mathematics and Mechanics, 1990, 11(4): 279-282. |
[17] | Chen Yao-song, Cao Nian-zheng. A Hybrid FEM Algorithm for Fluid Flow in a Visco-Elastic Pipe[J]. Applied Mathematics and Mechanics, 1989, 10(6): 517-622. |
[18] | Lia Tong-ji, Pu Qun. An Exact Solution for Incompressible Flow Through a Two-Dimensional Laval Nozzle[J]. Applied Mathematics and Mechanics, 1986, 7(6): 487-495. |
[19] | Su Ming-de. Finite Element Analysis of Non-Newtonian Fluid Flow in 2-D Branching Channel[J]. Applied Mathematics and Mechanics, 1986, 7(10): 929-936. |
[20] | Li Yong-chi, T. C. T. Ting. Lagrangian Description of Transport Equations for Shock Waves in Three-Dimensional Elastic Solids[J]. Applied Mathematics and Mechanics, 1982, 3(4): 449-462. |