LIN Zheng-yan, CHENG Zong-mao. Maximal Speed of the Particles of Super-Lévy Process[J]. Applied Mathematics and Mechanics, 2008, 29(4): 469-476.
Citation: LIN Zheng-yan, CHENG Zong-mao. Maximal Speed of the Particles of Super-Lévy Process[J]. Applied Mathematics and Mechanics, 2008, 29(4): 469-476.

Maximal Speed of the Particles of Super-Lévy Process

  • Received Date: 2007-02-01
  • Rev Recd Date: 2008-02-25
  • Publish Date: 2008-04-15
  • Super-Lvy process was intr oduced.Maximal speed of all particles in ther ange and the support of a supper-Lvy process was studied.The state of historical super-Lvy process is a measure on the set of paths.The maximal speed of all particles was studied,during a given time period E, which turns out to be function of the packing dimension of E.The Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lvy process were calculated.
  • loading
  • [1]
    Dawson D A,Perkins E A.Historical processes[J].Memoirs Amer Math Soc,1991,93(454):1-184.
    [2]
    Verzani J.The slow points in the support of historical super-Brownian motion[J].Ann Probab,1995,23(1):56-70. doi: 10.1214/aop/1176988376
    [3]
    Cox T,Durrett R,Perkins E A.Rescaled particale systems converging to super-Brownian motion[A].In:Bramson E A,Durrett R,Eds.Perplexing Problems in Probability[C].Birkhuser:Basel,1999,269-284.
    [4]
    Le Gall J F.Spatial Branching Processes, Random Snakes and Partial Differential Equations[M].Birkhuser:Basel,1999.
    [5]
    Revuz D,Yor M.Continuous Martingales and Brownian Motion[M].Berlin:Springer-Verlag,1991.
    [6]
    Serlet L.Some dimension results for super-Brownian motion[J].Probab Thorey Relat Fields,1995,101(3):371-391. doi: 10.1007/BF01200502
    [7]
    Slade G.Lattice trees, percolation and super-Brownian motion[A].In:Bramson M,Durrett R,Eds.Perplexing Problems in Probability[C].Birkhuser:Basel,1996,35-53.
    [8]
    Mrters P.How fast are the particles of super-Brownian motion?[J].Probab Theory Relat Fields,2001,121(2):171-197. doi: 10.1007/PL00008801
    [9]
    Deheuvels P,Mason D M.Random fractal functional laws of the iterated logarithm[J].Studia Sci Math Hungar,1998,34(1):89-106.
    [10]
    Khoshnevisan D,Peres Y,Xiao Y.Limsup random fractals[J].EI J Probab,2000, 5(4):1-24.
    [11]
    Khoshnevisan D,Shi Z.Fast sets and points for fractional Brownian motion[A].Séminaire de Probabilitiés[C].34.Springer-Verlag,2003,393-416.
    [12]
    Bertoin J.Lévy Processes[M].Cambridge:Cambridge University Press,1996.
    [13]
    Blumenthal R M,Getoor R K.Sample functions of stochastic processes with stationary independent increments[J].J Math Mech,1961,10(3):493-516.
    [14]
    Khoshnevisan D,Xiao Y.Level sets of additive Lévy processes[J].Ann Probab,2002,30(1):62-100. doi: 10.1214/aop/1020107761
    [15]
    Khoshnevisan D,Xiao Y,Zhong Y.Local time of additive Lévy processes[J].Stoch Proc Appl,2003,104(2):193-216. doi: 10.1016/S0304-4149(02)00237-5
    [16]
    Lin Z Y,Lu C R,Zhang L X.Path Properties of Gaussian Processes[M].Hangzhou:Zhejiang University Press,2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2271) PDF downloads(659) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return