LI Ji-bin. Exact Traveling Wave Solutions for an Integrable Nonlinear Evolution Equation Given by M. Wadati[J]. Applied Mathematics and Mechanics, 2008, 29(4): 393-397.
Citation: LI Ji-bin. Exact Traveling Wave Solutions for an Integrable Nonlinear Evolution Equation Given by M. Wadati[J]. Applied Mathematics and Mechanics, 2008, 29(4): 393-397.

Exact Traveling Wave Solutions for an Integrable Nonlinear Evolution Equation Given by M. Wadati

  • Received Date: 2008-02-19
  • Rev Recd Date: 2008-03-05
  • Publish Date: 2008-04-15
  • By using the method of dynamical systems,the travelling wave solutions of for an integrable nonlinear evolution equation was studied.Exact explicit parametric representations of kink and anti-kink wave solutions,periodic wave solutions and uncountably infinite many smooth solitary wave solutions are given.
  • loading
  • [1]
    Wadati M,Ichikawa Y H,Shimizu T.Cusp soliton of a new integrable nonlinear evolution equation[J].Progress of Theoretical Physics,1980,64(6):1959-1967. doi: 10.1143/PTP.64.1959
    [2]
    LI Ji-bin,DAI Hui-hui.On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach[M].Beijing:Science Press,2007.
    [3]
    LI Ji-bin,WU Jia-hong,ZHU Huai-ping.Travelling waves for an integrable higher order KdV type wave equations[J].International Journal of Bifurcation and Chaos,2006,16(8):2235-2260. doi: 10.1142/S0218127406016033
    [4]
    LI Ji-bin,CHEN Guan-rong.On a class of singular nonlinear traveling wave equations[J].International Journal of Bifurcation and Chaos,2007,17(11):4049-4065. doi: 10.1142/S0218127407019858
    [5]
    Byrd P F,Fridman M D.Handbook of Elliptic Integrals for Engineers and Sciensists[M].Berlin:Springer,1977.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2705) PDF downloads(612) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return