HUANG Zhang-feng, ZHOU Heng. Evolution of a 2-D Disturbance in a Supersonic Boundary Layer and the Generation of Shocklets[J]. Applied Mathematics and Mechanics, 2004, 25(1): 1-8.
Citation: HUANG Zhang-feng, ZHOU Heng. Evolution of a 2-D Disturbance in a Supersonic Boundary Layer and the Generation of Shocklets[J]. Applied Mathematics and Mechanics, 2004, 25(1): 1-8.

Evolution of a 2-D Disturbance in a Supersonic Boundary Layer and the Generation of Shocklets

  • Received Date: 2003-08-20
  • Rev Recd Date: 2003-07-20
  • Publish Date: 2004-01-15
  • Through direct numerical simulation,the evolution of a 2-D disturbance in a supersonic boundary layer has been investigated.At a chosen location,a small amplitude T-S wave was fed into the boundary layer to investigate its evolution.Characteristics of non-linear evolution have been found.Two methods were applied for the detection of shocklels,and it was found that when the amplitude of the disturbance reached a certain value,shocklets would be generated,which should be taken into consideration when non-linear theory of hydrodynamic stability for compressible flows is to be estabfished.
  • loading
  • [1]
    张涵信,周恒.流体力学的基础研究[J].世界科技研究与发展,2001,23(1):15—18.
    [2]
    傅德薰,马延文.平面混合流拟序结构的直接数值模拟[J].中国科学,A辑,1996,26(7):659—664.
    [3]
    曹伟,周恒.二维超音速混合层中小激波的存在及其对流场结构的影响[J].中国科学,A辑,2001,31(5):439.
    [4]
    袁湘江,周恒.超声速边界层中小幅值T-S波的数值研究[J].应用数学和力学,2000,21(12),1211—1214.
    [5]
    Poinsot T J, Lele S K. Boundary conditions for direct simulations of compressible viscous flows[J].Journal of Computational Physics,1992,101:104—129. doi: 10.1016/0021-9991(92)90046-2
    [6]
    周恒,尤学一.流动稳定性弱非线性理论中的问题及其改进[J].力学学报,1993,25(5): 515—528.
    [7]
    周恒,藤村薰.流动稳定性弱非线性理论的进一步改进[J].中国科学,A辑,1997,27(12):1111—1118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3566) PDF downloads(786) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return