HU Ya-yuan. Study on the Super Viscoelastic Constitutive Theory for Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. doi: 10.3879/j.issn.1000-0887.2016.06.004
Citation: HU Ya-yuan. Study on the Super Viscoelastic Constitutive Theory for Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. doi: 10.3879/j.issn.1000-0887.2016.06.004

Study on the Super Viscoelastic Constitutive Theory for Saturated Porous Media

doi: 10.3879/j.issn.1000-0887.2016.06.004
Funds:  The National Natural Science Foundation of China(51178419)
  • Received Date: 2015-11-24
  • Rev Recd Date: 2016-02-23
  • Publish Date: 2016-06-15
  • In order to establish the super viscoelastic constitutive framework for saturated porous media in view of the reversible and irreversible deformations of solids, porous solids and fluids, an energy balance equation of which all terms were in the thermodynamically power-conjugated form, was built for saturated porous media according to the principle of homogeneous mixture response, with the porous solid selected as the reference configuration and the effective stress tensor, the material’s real hydrostatic stress and the fluid’s real pore pressure chosen as the state variables. The entropy flux and entropy production of the saturated porous medium were derived based on the decomposing principle of entropy in the non-equilibrium thermodynamics. The work shows that the super elastoplastic constitutive theory is only a special case of the proposed theory. The deformation rate of a porous solid is composed of 2 parts: the solid-phase interstice and the material deformation, of which the former is power-conjugated with the Terzaghi effective stress tensor and the latter with the material’s real hydrostatic stress. The free energy of a saturated porous medium consists of 2 parts: the porous solid-phase part and the fluid-phase part. If the solid-phase interstice is decoupled from the material deformation, the free energy of the solid can be further divided into 2 parts: the material strain and the interstitial change. The Skempton-type effective stress is proved not to be a basic state variable for saturated porous media.
  • loading
  • [1]
    Boit M A. Theory of elasticity and consolidation for a porous anisotropic solid[J].Journal of Applied Physics,1955,26(2): 182-185.
    [2]
    Geertsma J. The effect of fluid pressure decline on volumetric changes of porous rocks[J].Society of Petroleum Transactions,1957,210: 331-339.
    [3]
    Skempton A W.Effective Stress in Soils, Concrete and Rocks [M]. London, UK: Butterwoths, 1961: 4-16.
    [4]
    李传亮, 孔祥言, 徐献芝, 李培超. 多孔介质的双重有效应力[J]. 自然杂志, 1999,21(5): 288-291.(LI Chuan-liang, KONG Xiang-yan, XU Xian-zhi, LI Pei-chao. Double effective stresses of porous media[J].Ziran Zazhi,1999,21(5): 288-291.(in Chinese))
    [5]
    Fillunger P. Der Kapillardruck in Talperren[J].Die Wasserwirtschaft,1934,27(13/14): 129-131.
    [6]
    Heinrich V G, Desoyer K. Theorie dreidimensionaler Setzungsvorgnge in Tonschichten[J].Ingenieur-Archiv,1961,30: 225-253.
    [7]
    Bowen R M. 混合物理论[M]. 徐慧已, 张志新, 李如庆, 王清泉, 金和, 译. 南京: 江苏科学技术出版社, 1983: 1-48.(Bowen R M.Theory of Mixtures [M]. XU Hui-yi, ZHANG Zhi-xin, LI Ru-qing, WANG Qing-quan, JIN He, transl. Nanjing: Jiangsu Science and Technology Press, 1983: 1-48.(Chinese version))
    [8]
    陈正汉. 岩土力学的公理化理论体系[J]. 应用数学和力学, 1994,15(10): 901-910.(CHEN Zheng-han. An axiomatic of geomechanics[J].Applied Mathematics and Mechanics,1994,15(10): 901-910.(in Chinese))
    [9]
    Morland L W. A simple constitutive theory for a fluid-saturated porous solid[J].Journal of Geophysical Research,1972,77(5): 890-900.
    [10]
    de Boer R. Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory[J].Applied Mechanics Reviews,1996,49(4): 201-262.
    [11]
    Coussy O, Dormieux L, Detournay E. From mixture theory to Biot’s approach for porous media[J].International Journal of Solids and Structures, 1998,35(34/35): 4619-4635.
    [12]
    黄义, 张引科. 非饱和土本构关系的混合物理论(Ⅰ)——非线性本构方程和场方程[J]. 应用数学和力学, 2003,24(2): 111-123.(HUANG Yi, ZHANG Yin-ke. Constitutive relation of unsaturated soil by use of the mixtrue theory(Ⅰ)—nonlinear constitutive equations and field equations[J].Applied Mathematics and Mechanics,2003,24(2): 111-123.(in Chinese))
    [13]
    Houlsby G T. The work input to a granular material[J].Géotechnique,1979,29(3): 354-358.
    [14]
    Houlsby G T. The work input to an unsaturated granular material[J].Géotechnique,1997,47(1): 193-196.
    [15]
    Li X S. Thermodynamics-based constitutive framework for unsaturated soils—1: theory[J].Géotechnique,2007,57(5): 411-422.
    [16]
    Borja R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J].International Journal of Solids and Structures,2006,43: 1764-1786.
    [17]
    Zhao C G, Liu Y, Gao F P. Work and energy equations and the principle of generalized effective stress for unsaturated soils[J].International Journal for Numerical and Analytical Method in Geomechanics,2010,34(9): 881-990.
    [18]
    刘雪梅, 邓子辰, 胡伟鹏. 不可压饱和多孔弹性杆动力响应的多辛方法[J]. 应用数学和力学, 2015,36(3): 242-251.(LIU Xue-mei, DENG Zi-chen, HU Wei-peng. A multi-symplectic method for dynamic responses of incompressible saturated poroelastic rods[J].Applied Mathematics and Mechanics,2015,36(3): 242-251.(in Chinese))
    [19]
    庞国飞, 陈文, 张晓棣, 孙洪广. 复杂介质中扩散和耗散行为的分数阶导数唯象建模[J]. 应用数学和力学, 2015,36(11): 1117-1134.(PANG Guo-fei, CHEN Wen, ZHANG Xiao-di, SUN Hong-guang. Fractional differential phenomenological modeling for diffusion and dissipation behaviors of complex medium[J].Applied Mathematics and Mechanics,2015,36(11): 1117-1134.(in Chinese))
    [20]
    Geertsma J, Smit D C. Some aspects of elastic wave propagation in fluid-saturated porous solid[J].Geophysics,1961,26(2): 169-181.
    [21]
    Berrman J G. Confirmation of Biot’s theory[J].Applied Physics Letters,1980,37(4): id382. doi: 10.1063/1.91951.
    [22]
    Philippacopoulos A J. Lamb’s problem for fluid-saturated, porous media[J].Bulletin of the Seismological Society of America,1988,78(2): 908-923.
    [23]
    Chen J. Time domain fundamental solution to Biot’s complete equations of dynamic poroelasticity[J].Internal Journal of Solids and Structures,1994,31(2): 169-202.
    [24]
    李如生. 非平衡态热力学和耗散结构[M]. 北京: 清华大学出版社, 1986: 76-106.(LI Ru-sheng.Nonequilibrium Thermodynamics and Dissipative[M]. Beijing: Tsinghua Press, 1986: 76-106.(in Chinese))
    [25]
    Ziegler H.An Introduction to Thermomechanics[M]. 2nd ed. North-Holland: Amsterdam, 1983.
    [26]
    Collins I F, Houlsby G T. Application of thermomechanical principles to the modelling of geotechnical materials[J].Proceedings of the Royal Society A,1997,453(1964): 1975-2001.
    [27]
    Hill R.The Mathematical Theory of Plasticity[M]. Oxford, 1950: 50-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1138) PDF downloads(713) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return