QU Jing-jing, ZENG Zhong, QIAO Long, DING Yu-chong, FU Chang-lu. Numerical Simulation of the Micro-PullingDown Method for YAG Crystal Growth[J]. Applied Mathematics and Mechanics, 2016, 37(6): 574-583. doi: 10.3879/j.issn.1000-0887.2016.06.003
Citation: QU Jing-jing, ZENG Zhong, QIAO Long, DING Yu-chong, FU Chang-lu. Numerical Simulation of the Micro-PullingDown Method for YAG Crystal Growth[J]. Applied Mathematics and Mechanics, 2016, 37(6): 574-583. doi: 10.3879/j.issn.1000-0887.2016.06.003

Numerical Simulation of the Micro-PullingDown Method for YAG Crystal Growth

doi: 10.3879/j.issn.1000-0887.2016.06.003
Funds:  The National Natural Science Foundation of China(11572062)
  • Received Date: 2016-03-10
  • Rev Recd Date: 2016-04-28
  • Publish Date: 2016-06-15
  • The global numerical simulation was performed for the YAG crystal growth with the micro-pulling-down method. The induction heating, the convection of both gas and melt and the heat transfer of solid/melt/gas were solved simultaneously. In the melt zone, buoyancy convection and thermocapillary flow were considered. In order to uniformly discretize the controlling equations with the finite volume method, the electromagnetic field was modelled with the complex function method, and the computation of the electromagnetic field was verified with the results from the stream function method. Both the temperature and flow fields in the global furnace (including gas and melt) were investigated. As for the low temperature gradient at the solid-liquid interface, the effects of the afterheater was parametrically investigated. This work is useful for the optimal design of crystal growth furnaces.
  • loading
  • [1]
    Fukuda T,Chani V I. Shaped Crystasl: Growth by Micro-Pulling-Down Technique [M]. New York: Spring-Verlag, 2007: 3-5.
    [2]
    〖JP2〗Lan C W, Uda S, Fukuda T. Theoretical analysis of the micro-pulling-down process for GexSi1-x fiber crystal growth[J]. Journal of Crystal Growth,1998,193(4): 552-562.
    [3]
    Samanta G, Yeckel A, Daggolu P, Fang H S, Bourret-Courchesne E D, Derby J J. Analysis of limits for sapphire growth in a micro-pulling-down system[J]. Journal of Crystal Growth,2011,335(1): 148-159.
    [4]
    Gresho P M, Derby J J. A finite element model for induction heating of a metal crucible[J]. Journal of Crystal Growth,1987,85(1/2): 40-48.
    [5]
    Tavakoli M H. Modeling of induction heating in oxide Czochralski systems—advantages and problems[J]. Crystal Growth & Design,2008,8(2): 483-488.
    [6]
    SU Juan, CHEN Xue-jiang, LI Yuan. Numerical design of induction heating in the PVT growth of SiC crystal[J]. Journal of Crystal Growth,2014,401: 128-132.
    [7]
    Fang H S, Pan Y Y, Zheng L L, Zhang Q J, Wang S, Jin Z L. To investigate interface shape and thermal stress during sapphire single crystal growth by the Cz method[J]. Journal of Crystal Growth,2013,363: 25-32.
    [8]
    Khodamoradi H, Tavakoli M H, Mohammadi K. Influence of crucible and coil geometry on the induction heating process in Czochralski crystal growth system[J]. Journal of Crystal Growth,2015,421: 66-74.
    [9]
    Chen Q S, Zhang H, Prasad V, Balkas C M, Yushin N K. Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals[J]. Journal of Heat Transfer,2001,123(6): 1098-1109.
    [10]
    Fang H S, Yan Z W, Bourret-Courchesne E D. Numerical study of the micro-pulling-down process for sapphire fiber crystal growth[J]. Crystal Growth & Design,2010,11(1): 121-129.
    [11]
    苏文佳, 左然, 程晓农. μ-PD法蓝宝石纤维晶体生长中传热传质的数值模拟[J]. 人工晶体学报,2014,43(12): 3214-3218.(SU Wen-jia, ZUO Ran, CHENG Xiao-nong. Numerical simulation of the heat and mass transfer during the process of μ-PD sapphier fiber crystal growth[J]. Journal of Synthetic Crystals,2014,43(12): 3214-3218.(in Chinese))
    [12]
    刘亚平, 曾忠, 许小龙, 张臻, 屈菁菁. 不同结构板翅式油冷器单层冷却液侧换热特性的数值模拟[J]. 应用数学和力学, 2014,35(7): 815-822.(LIU Ya-ping, ZENG Zhong, XU Xiao-long, ZHANG Zhen, QU Jing-jing. Numerical simulation of monolayer coolant-side heat transfer characteristics for plate-fin oil coolers with different structers[J]. Applied Mathematics and Mechanics,2014,35(7): 815-822.(in Chinese))
    [13]
    张尚中, 曾忠, 张永祥, 邱周华, 时洪宇. Czochralski法晶体生长全局数值模拟[J]. 重庆交通大学学报(自然科学版), 2009,28(S): 355-357.(ZHANG Shang-zhong, ZENG Zhong, ZHANG Yong-xiang, QIU Zhou-hua, SHI Hong-yu. Global numerical simulation of crystal Czochralski growth[J]. Journal of Chongqing Jiaotong University(Natural Sciences),2009,28(S): 355-357.(in Chinese))
    [14]
    Banerjee J, Muralidhar K. Role of internal radiation during Czochralski growth of YAG and Nd: YAG crystals[J]. International Journal of Thermal Sciences,2006,45(2): 151-167.
    [15]
    姚丽萍, 曾忠, 张永祥. 微重力环境下横向旋转磁场对热表面张力流的影响[J]. 重庆大学学报, 2012,35(3): 115-120.(YAO Li-ping, ZENG Zhong, ZHANG Yong-xiang. Effects of transverse rotating magnetic field on thermocapillary flow under microgravity[J]. Journal of Chongqing University,2012,35(3): 115-120.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1381) PDF downloads(601) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return