Citation: | XU Xiao-jian, DENG Zi-chen. The Variational Principle for Multi-Layer Timoshenko Beam Systems Based on the Simplified[J]. Applied Mathematics and Mechanics, 2016, 37(3): 235-244. doi: 10.3879/j.issn.1000-0887.2016.03.002 |
[1] |
Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology[J]. International Journal of Engineering Science,2003,41(3/5): 305-312.
|
[2] |
Wang K F, Wang B L, Kitamura T. A review on the application of modified continuum models in modeling and simulation of nanostructures[J]. Acta Mechanica Sinica,2015: 1-18. doi: 10.1007/s10409-015-0508-4.
|
[3] |
Adali S. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model[J]. Nano Letters,2009,9(5): 1737-1741.
|
[4] |
Adali S. Variational formulation for buckling of multi-walled carbon nanotubes modelled as nonlocal Timoshenko beams[J]. Journal of Theoretical and Applied Mechanics,2012,50(1): 321-333.
|
[5] |
Kucuk I, Sadek I S, Adali S. Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory[J]. Journal of Nanomaterials,2010,2010(3): 461252. doi: 10.1155/2010/461252.
|
[6] |
李明, 郑慧明. 小尺度对振动简支单层碳纳米管边界条件的影响[J]. 固体力学学报, 2014,35(S): 6-8.(LI Ming, ZHENG Hui-ming. Small scale effect on boundary conditions of vibrating simply supported single-walled carbon nanotubes[J]. Chinese Journal of Solid Mechanics,2014,35(S): 6-8.(in Chinese))
|
[7] |
姚征, 郑长良. 积分形式非局部本构关系的界带分析方法[J]. 应用数学和力学, 2015,36(4): 362-370.(YAO Zheng, ZHENG Chang-liang. Inter-belt analysis of the integral-form nonlocal constitutive relation[J]. Applied Mathematics and Mechanics, 2015,36(4): 362-370.(in Chinese))
|
[8] |
HE Ji-huan. Variational approach to (2+1)-dimensional dispersive long water equations[J]. Physics Letters A,2005,335(2/3): 182-184.
|
[9] |
Kumar D, Heinrich C, Waas A M. Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories[J]. Journal of Applied Physics,2008,103(7): 073521.
|
[10] |
LI Xian-fang, WANG Bao-lin, LEE Kang-yong. Size effects of the bending stiffness of nanowires[J]. Journal of Applied Physics,2009,105(7): 074306.
|
[11] |
WANG Bing-lei, ZHAO Jun-feng, ZHOU Shen-jie. A micro scale Timoshenko beam model based on strain gradient elasticity theory[J]. European Journal of Mechanics—A/Solids,2010,29(4): 591-599.
|
[12] |
Nojoumian M A, Salarieh H. Comment on “A micro scale Timoshenko beam model based on strain gradient elasticity theory”[J]. European Journal of Mechanics—A/Solids,2013. doi: 10.1016/j.euromechsol.2013.12.003.
|
[13] |
Challamel N. Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams[J]. Composite Structures,2013,105: 351-368.
|
[14] |
XU Xiao-jian, DENG Zi-chen. Variational principles for the buckling and vibration of MWCNTs modeled by strain gradient theory[J]. Applied Mathematics and Mechanics(English Edition),2014,35(9): 1115-1128.
|
[15] |
KONG Sheng-li, ZHOU Shen-jie, NIE Zhi-feng, WANG Kai. Static and dynamic analysis of micro beams based on strain gradient elasticity theory[J]. International Journal of Engineering Science,2009,47(4): 487-498.
|
[16] |
Akgz B, Civalek . Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory[J]. Archive of Applied Mechanics,2012,82(3): 423-443.
|
[17] |
WANG Li-feng, GUO Wan-lin, HU Hai-yan. Group velocity of wave propagation in carbon nanotubes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science,2008,464(2094): 1423-1438.
|