LI Tao, SUI Jing-xia, WU Chui-jie. Simulation of 6-DOF Rigid Bodies Moving in Supersonic Flow[J]. Applied Mathematics and Mechanics, 2016, 37(1): 27-47. doi: 10.3879/j.issn.1000-0887.2016.01.003
Citation: LI Tao, SUI Jing-xia, WU Chui-jie. Simulation of 6-DOF Rigid Bodies Moving in Supersonic Flow[J]. Applied Mathematics and Mechanics, 2016, 37(1): 27-47. doi: 10.3879/j.issn.1000-0887.2016.01.003

Simulation of 6-DOF Rigid Bodies Moving in Supersonic Flow

doi: 10.3879/j.issn.1000-0887.2016.01.003
Funds:  The National Natural Science Foundation of China(11372068); The National Basic Research Program of China(973 Program)(2014CB744104)
  • Received Date: 2015-10-29
  • Rev Recd Date: 2015-11-20
  • Publish Date: 2016-01-16
  • Simulation of bodies moving in fluid has very broad application areas. A method for solving unsteady compressible supersonic flow with freely moving rigid bodies of 6 degrees of freedom was presented. The fluid solver dealt with the large-eddy simulation turbulence model, which was a stretched vortex subgrid model in the current work. The WENO scheme was used in the discontinuous flow regions (the shock waves and the contact surfaces) and the tuned center difference scheme was applied in the smooth flow regions. An optimal 3rd-order strong-stability preserving Runge-Kutta scheme was used for the time integration. The model for the rigid bodies was of 6 degrees of freedom and its orientation was tracked with a quaternion. Several numerical examples were presented to verify the correctness and accuracy of the solvers and the results were satisfactory.
  • loading
  • [1]
    Lijewski L E, Suhs N E. Time-accurate computational fluid dynamics approach to transonic store separation trajectory prediction[J]. Journal of Aircraft,1994,31(4): 886-891.
    [2]
    Koomullil R, Cheng G, Soni B, Noack R, Prewitt N. Moving-body simulations using overset framework with rigid body dynamics[J]. Mathematics and Computers in Simulation,2008,78(5/6): 618-626.
    [3]
    Noack R W. DiRTlib: a library to add an overset capability to your flow solver[C]// 17th AIAA Computational Fluid Dynamics Conference . Toronto, Ontario, Canada, 2005: 5116.
    [4]
    Murman S M, Aftosmis M J, Berger M J. Simulations of 6-DOF motion with a Cartesian method[C]//41st AIAA Aerospace Sciences Meeting . Reno, Nevada, 2003: 1246.
    [5]
    Murman S M, Chan W M, Aftosmis M J, Meakin R L. An interface for specifying rigid-body motions for CFD applications[C]//41st AIAA Aerospace Sciences Meeting.Reno, Nevada, 2003: 1237.
    [6]
    刘君, 白晓征, 郭正. 非结构动网格计算方法——及其在包含运动界面的流场模拟中的应用[M]. 长沙: 国防科技大学出版社, 2009.(LIU Jun, BAI Xiao-zheng, GUO Zheng. Numerical Simulation Method Using Unstructured Meshes—Including Applications Flows With Moving Interface [M]. Changsha: National University of Defense Technology Press, 2009.(in Chinese))
    [7]
    Martín M P, Taylor E M, Wu M, Weirs V G. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics,2006,220(1): 270-289.
    [8]
    Vreman B, Geurts B, Kuerten H. A priori tests of large eddy simulation of the compressible plane mixing layer[J]. Journal of Engineering Mathematics,1995,29(4): 299-327.
    [9]
    Vreman B. Direct and large-eddy simulation of the compressible turbulent mixing layer[D]. PhD Thesis. Enschede: University of Twente, 1995.
    [10]
    Martín M P, Piomelli U, Candler G V. Subgrid-scale models for compressible large-eddy simulations[J].Theoretical and Computational Fluid Dynamics,2000,13(5): 361-376.
    [11]
    Misra A, Pullin D I. A vortex-based subgrid stress model for large-eddy simulation[J]. Physics of Fluids,1997,9(8): 2443-2454.
    [12]
    Kosovi? B, Pullin D I, Samtaney R. Subgrid-scale modeling for large-eddy simulations of compressible turbulence[J]. Physics of Fluids,2002,14(4): 1511-1522.
    [13]
    Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics,2006,557(6): 29-61.
    [14]
    Lesieur M, Métais O. New trends in large-eddy simulations of turbulence[J]. Annual Review of Fluid Mechanics,1996,28(1): 45-82.
    [15]
    Voelkl T, Pullin D I, Chan D C. A physical-space version of the stretched-vortex subgrid-stress model for large eddy simulation[J]. Physics of Fluids,2000,12(7): 1810-1825.
    [16]
    Pullin D I. A vortex-based model for the subgrid flux of a passive scalar[J]. Physics of Fluids,2000,12(9): 2311-2319.
    [17]
    张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社, 2008.(ZHANG Zhao-shun, CUI Gui-xiang, XU Chun-xiao. Theories and Applications of Large Eddy Simulation for Turbulence[M]. Beijing: Tsinghua University Press, 2008.(in Chinese))
    [18]
    Weirs V G, Candler G V. Optimization of weighted ENO schemes for DNS of compressible turbulence[C]//13th Computational Fluid Dynamics Conference . Snowmass Village, Colorado, 1997.
    [19]
    Lin S Y, Hu J J. Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics[J]. AIAA Journal,2001,39(3): 371-379.
    [20]
    Mittal R, Moin P. Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows[J]. AIAA Journal,1997,35(8): 1415-1417.
    [21]
    Adams N A, Shariff K. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J]. Journal of Computational Physics,1996,127(1): 27-51.
    [22]
    Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics,2002,178(1): 81-117.
    [23]
    Hill D J, Pullin D I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks[J]. Journal of Computational Physics,2004,194(2): 435-450.
    [24]
    Zang T A. On the rotation and skew-symmetric forms for incompressible flow simulations[J]. Applied Numerical Mathematics,1991,7(1): 27-40.
    [25]
    Blaisdell G A. Numerical simulation of compressible homogeneous turbulence[D]. PhD Thesis. California: Stanford University, 1991.
    [26]
    Honein A E, Moin P. Higher entropy conservation and numerical stability of compressible turbulence simulations[J]. Journal of Computational Physics,2004,201(2): 531-545.
    [27]
    Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(1): 202-228.
    [28]
    Mauch S. Efficient algorithms for solving static Hamilton-Jacobi equations[D]. PhD Thesis. Pasadena, California: California Institute of Technology, 2003.
    [29]
    Gottlieb S, Shu C W, Tadmor E. Strong stability-preserving high-order time discretization methods[J].SIAM Review,2001,43(1): 89-112.
    [30]
    Smart E H. Advanced Dynamics[M]. Macmillan, 1951.
    [31]
    Thomson W T. Introduction to space dynamics[C]// NASA STI/Recon Technical Report A . New York: Dover Publications Inc, 1986.
    [32]
    Glass I I, Kaca J, Zhang D L, Glaz H M, Bell J B, Trangenstein J A, Collins J P. Diffraction of planar shock waves over half-diamond and semicircular cylinders: an experimental and numerical comparison[C]//Current Topics in Shock Waves 17th International Symposium on Shock Waves and Shock Tubes . Bethlehem, Pennsylvania, 1990,208: 246-251.
    [33]
    Zhang D L, Glass I I. An interferometric investigation of the diffraction of planar shock waves over a half-diamond cylinder in air[R]. Toronto: University of Toronto, 1988.
    [34]
    Forrer H, Berger M. Flow Simulations on Cartesian grids involving complex moving geometries[C]//Hyperbolic Problems: Theory, Numerics, Applications . Basel: Birkhuser Verlag, 1999,129: 315-324.
    [35]
    Falcovitz J, Alfandary G, Hanoch G. A two-dimensional conservation laws scheme for compressible flows with moving boundaries[J]. Journal of Computational Physics,1997,138(1): 83-102.
    [36]
    Arienti M, Hung P, Morano E, Shepherd J E. A level set approach to Eulerian-Lagrangian coupling[J].Journal of Computational Physics,2003,185(1): 213-251.
    [37]
    Laurence S J, Deiterding R. Shock-wave surfing[J].Journal of Fluid Mechanics,2011,676(3): 396-431.
    [38]
    Laurence S J, Parziale N J, Deiterding R. Dynamical separation of spherical bodies in supersonic flow[J]. Journal of Fluid Mechanics,2012,713(12): 159-182.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1210) PDF downloads(527) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return