ZHANG Liang, LIN Wan-tao, CHEN Xian-feng, MO Jia-qi. Travelling Solutions to High-Dimensional Weakly Perturbed Breaking Soliton Wave Equations[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1204-1210. doi: 10.3879/j.issn.1000-0887.2015.11.008
Citation: ZHANG Liang, LIN Wan-tao, CHEN Xian-feng, MO Jia-qi. Travelling Solutions to High-Dimensional Weakly Perturbed Breaking Soliton Wave Equations[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1204-1210. doi: 10.3879/j.issn.1000-0887.2015.11.008

Travelling Solutions to High-Dimensional Weakly Perturbed Breaking Soliton Wave Equations

doi: 10.3879/j.issn.1000-0887.2015.11.008
Funds:  The National Natural Science Foundation of China(41275062;11371248)
  • Received Date: 2015-06-15
  • Rev Recd Date: 2015-07-10
  • Publish Date: 2015-11-15
  • A class of high-dimensional weakly perturbed breaking solitary wave equations were studied. Firstly, the corresponding typical breaking solitary wave equations were considered. The exact solitary wave solution was obtained with the throwing method of undetermined coefficients. Then, the travelling wave asymptotic solution to the original weakly perturbed breaking solitary wave equation was found through functional analysis based on the perturbation theories. Finally, with an example, the proposed travelling wave asymptotic solution to the weakly perturbed breaking solitary wave equation shows the merits of simpleness, validity and good accuracy.
  • loading
  • [1]
    Hasselman K. Stochastic climate models, part Ⅰ: theory[J]. Tellus,1976,28(6): 473-486.
    [2]
    Frankignoul C, Hasselman K. Stochastic climate models, part II: application to sea-surface temperature anomalies and thermocline variability[J]. Tellus,1977,29(4): 289-305.
    [3]
    Lemke P. Stochastic perturbation of deterministic systems, part 3: application to zonally averaged energy models[J]. Tellus,1977,29(5): 385-392.
    [4]
    李麦村. 海气相互作用的随机-动力理论[J]. 海洋学报, 1981,3(3): 382-389.(LI Mai-cun. The stochastic theory of air-sea interaction[J]. Acta Oceanologica Sinica,1981,3(3): 382-389.(in Chinese))
    [5]
    Mller J D, Shapiro L J. Influences of asymmetric heating on hurricane evolution in the MM5[J]. Journal of the Atmospheric Sciences,2005,62(11): 3974-3992.
    [6]
    Luo J J, Masson S, Behera S, Yamagata T. Extended ENSO predictions using a fully coupled ocean-atmosphere model[J]. Journal of Climate,2008,21(1): 84-93.
    [7]
    FENG Guo-ling, CAO Yong-zhong, CAO Hong-xing. Air-sea stochastic climatic model and its application[J]. Chinese Journal of Computational Physics, 2001,18(1): 57-63.
    [8]
    Zhang R H, Zebiak S E. An embedding method for improving interannual variability simulations in a hybrid coupled model of the tropical Pacific Ocean-atmosphere system[J]. Journal of Climate,2004,17(14): 2794-2812.
    [9]
    李麦村, 黄嘉佑. 关于海温准三年及半年周期振荡的随机气候模式[J]. 气象学报, 1984,42(2): 168-176.(LI Mai-cun, HUANG Jia-you. A stochastic climate model on the quasithree-yearly and half-yearly oscillation of the sea surface temperature[J]. Journal of Meteorology,1984,42(2): 168-176.(in Chinese))
    [10]
    WANG Chun-zai. A unified oscillator model for the El Nino-southern oscillation[J]. Journal of Climate,2001,14(1): 98-115.
    [11]
    LI Xiao-jing. The periodic solution to the model for the El Nino-southern oscillation[J]. Chinese Physics B,2010,19(3): 030201-1-030201-3.
    [12]
    DU Zeng-ji, LIN Wan-tao, MO Jia-qi. Perturbation method of studying the El Nino oscillation with two parameters by using the delay sea-air oscillator model[J]. Chinese Physics B,2012,21(9): 090201-1-090201-5.
    [13]
    陈丽娟, 鲁世平. 一类太空等离子体单粒子运动模型的同宿轨[J]. 应用数学和力学, 2013,34(12): 1258-1265.(CHEN Li-juan, LU Shi-ping. Homoclinic orbit of the motion model for a single space plasma particle[J]. Applied Mathematics and Mechanics,2013,34(12): 1258-1265.(in Chinese))
    [14]
    陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题[J]. 物理学报, 2013,62(20): 200201-1-200201-4.(CHEN Li-juan, LU Shi-ping. The problem of periodic solution of nonlinear model in zero-dimensional climate system[J]. Acta Physica Sinica,2013,62(20): 200201-1-200201-4.(in Chinese))
    [15]
    陈丽娟, 鲁世平. 无晨昏电场下带电粒子在中性片磁场中运动的周期轨[J]. 应用数学和力学, 2014,35(11): 1280-1286.(CHEN Li-juan, LU Shi-ping. The periodic orbits of electric particles sporting in neutral sheet magnetic field without the dawn-dusk electric field[J]. Applied Mathematics and Mechanics,2014,35(11): 1280-1286.(in Chinese))
    [16]
    Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer, 1977.
    [17]
    LU Shi-ping, CHEN Li-juan. The problem of existence of periodic solutions for neutral functional differential system with nonlinear difference operator[J]. J Math Anal Appl,2012,387(2): 1127-1136.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1272) PDF downloads(721) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return