FENG Xiao-jiu, LIANG Li-fu. Power Type Variational Principles and Work-Energy Type Quasi-Variational Principles and Their Applications[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1178-1190. doi: 10.3879/j.issn.1000-0887.2015.11.006
Citation: FENG Xiao-jiu, LIANG Li-fu. Power Type Variational Principles and Work-Energy Type Quasi-Variational Principles and Their Applications[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1178-1190. doi: 10.3879/j.issn.1000-0887.2015.11.006

Power Type Variational Principles and Work-Energy Type Quasi-Variational Principles and Their Applications

doi: 10.3879/j.issn.1000-0887.2015.11.006
Funds:  The National Natural Science Foundation of China(10272034)
  • Received Date: 2015-05-18
  • Rev Recd Date: 2015-09-09
  • Publish Date: 2015-11-15
  • Since the power type variational principle was established by CHIEN Wei-zang, the differences and relations between the power type variational principles and the work-energy type quasi-variational principles in theory and practice have been a hot topic in the academic circle. According to the Jourdain principle and the d’Alembert principle, the power type variational principles and the work-energy type quasi-variational principles were established for the incompressible viscous flow in liquid-filled systems with the variational integral operation method, so as to deduce their stationary condition and quasi-stationary condition, respectively. The applications of the power type variational principles and the work-energy type quasi-variational principles in the finite element method were studied. It shows that the work-energy type quasi-variational principles coincide with the d’Alembert principle and the power type variational principles do with the Jourdain principle. The power type variational principles directly work in the state space so that they not only omit some transforms in the time space during the building of the related variational principles, but also make it convenient to build numerical models for dynamic problems.
  • loading
  • [1]
    程昌钧. 钱伟长先生对力学和应用数学的贡献[J]. 力学进展, 2010,40(9): 480-494.(CHENG Chang-jun. Mr QIAN Wei-chang’s contribution to the mechanics and applied mathematics[J].Advances in Mechanics,2010,40(9): 480-494.(in Chinese))
    [2]
    Reissner E. On a variational theorem in elasticity[J].Journal of Mathematics and Physics,1950,29(2): 90-98.
    [3]
    Washizu K.Variational Method in Elasticity and Plastisity[M]. New York: Pergamon Press, 1982.
    [4]
    Pian Theodore H H. Derivation of element stiffness matrices by assumed stress distributions[J].AIAA Journal,1964,2(7): 1333-1336.
    [5]
    钱伟长. 粘性流体力学的变分原理和广义变分原理[J]. 应用数学和力学, 1984,5(3): 305-322.(CHIEN Wei-zang. Variational principles and generalized variational principles in hydrodynamics of viscous fluids[J].Applied Mathematics and Mechanics,1984,5(3): 305-322.(in Chinese))
    [6]
    HU Hai-chang. On some variational principles in the theory of elasticity and the theory of plasticity[J].Scientia Sinica,1955,4(1): 33-42.
    [7]
    梁立孚, 石志飞. 关于变分学中逆问题的研究[J]. 应用数学和力学, 1994,15(9): 775-788.(LIANG Li-fu, SHI Zhi-fei. On the inverse problem in calculus of variations[J].Applied Mathematics and Mechanics,1994,15(9): 775-788.(in Chinese))
    [8]
    梁立孚, 石志飞. 粘性流体力学的变分原理及其广义变分原理[J]. 应用力学学报, 1993,10(1): 119-123.(LIANG Li-fu, SHI Zhi-fei. Quasi-variational principles of incompressible viscous fluids[J].Chinese Journal of Applied Mechanics,1993,10(1): 119-123.(in Chinese))
    [9]
    郝名望, 梁立孚, 叶正寅. 不可压粘性流体力学的边值问题的拟变分原理及其广义拟变分原理[J]. 空气动力学学报, 2010,28(3): 297-301.(HAO Ming-wang, LIANG Li-fu, YE Zheng-yin. Quasi-variational principle and general quasi-variational principle for incompressible flow boundary value problems[J].Acta Aerodynamica Sinica,2010,28(3): 297-301.(in Chinese))
    [10]
    郝名望, 梁立孚, 叶正寅. 不可压粘性流体力学初值问题的拟变分原理及广义变分原理[J]. 空气动力学学报, 2011,29(3): 317-324.(HAO Ming-wang, LIANG Li-fu, YE Zheng-yin. Quasi-variational principle and general quasi-variational principle for incompressible flow initial value problems[J].Acta Aerodynamica Sinica,2011,29(3): 317-324.(in Chinese))
    [11]
    陈波, 李孝伟, 刘高联. 一个关于流动能量耗散率的minimax变分原理[J]. 应用数学和力学, 2010,31(7): 772-780.(CHEN Bo, LI Xiao-wei, LIU Gao-lian. Minimax principle on energy dissipation of incompressible shear flow[J].Applied Mathematics and Mechanics,2010,31(7): 772-780.(in Chinese))
    [12]
    钱伟长. 广义变分原理[M]. 上海: 知识出版社, 1985.(CHIEN Wei-zang.Generalized Variational Principles [M]. Shanghai: Affairs Press, 1985.(in Chinese))
    [13]
    钱伟长. 对合变换和薄板弯曲问题的多变量变分原理[J]. 应用数学和力学, 1985,6(1): 25-40.(CHIEN Wei-zang. Involutory transformations and variational principles with multivariables in thin plate bending problems[J].Applied Mathematics and Mechanics,1985,6(1): 25-40.(in Chinese))
    [14]
    刘高联. 流体力学变分原理及其有限元法研究的进展[J]. 上海力学, 1989,10(3): 73-80.(LIU Gao-lian. The progress of fluid mechanics variational principles and finite element method[J].Shanghai Mechanical,1989,10(3): 73-80.(in Chinese))
    [15]
    沈孝明. 粘性流体动力学的混合协调元和混合杂交非协调元变分法[J]. 应用数学和力学, 1992,15(6): 529-537.(SHEN Xiao-ming. Hybrid coordinate elements and the hybrid coordinate elements variational method of viscous fluid dynamics[J].Applied Mathematics and Mechanics,1992,15(6): 529-537.(in Chinese))
    [16]
    罗振东, 朱江. 定常的Navier-Stokes方程的非线性Galerkin混合元法及其后验估计[J]. 应用数学和力学, 2002,23(10): 1061-1072.(LUO Zhen-dong, ZHU Jiang. A nonlinear Galerkin mixed element method and a posteriori error estimator for the stationary Navier-Stokes equations[J].Applied Mathematics and Mechanics, 2002,23(10): 1061-1072.(in Chinese))
    [17]
    余云龙, 林忠, 王瑞利, 刘全, 陈星玎. 辐射流体力学Lagrange方程组一类人为解构造方法[J]. 应用数学和力学, 2015,36(1): 110-118.(YU Yun-long, LIN Zhong, WANG Rui-li, LIU Quan, CHEN Xing-ding. A method of manufacturing solutions for verification of Lagrangian radiation hydrodynamic codes[J].Applied Mathematics and Mechanics,2015,36(1): 110-118.(in Chinese))
    [18]
    钱伟长. 变分法及有限元[M]. 北京: 科学出版社, 1980.(CHIEN Wei-zang.Variational Method and Finite Element Method [M]. Beijing: Science Press, 1980.(in Chinese))
    [19]
    HU Hai-chang.Variational Principles of Theory of Elasticity With Applications [M]. Beijing: Science Press; New York: Gordon and Breach, Science Publishers Inc, 1984.
    [20]
    梁立孚, 宋海燕, 樊涛, 刘宗民. 非保守系统的拟变分原理及其应用[M]. 北京: 科学出版社, 2015.(LIANG Li-fu, SONG Hai-yan, FAN Tao, LIU Zong-min.Quasi-Variational Principles of Non-Conservative Systems With Applications[M]. Beijing: Science Press, 2015.(in Chinese))
    [21]
    吴望一. 流体力学[M]. 北京: 北京大学出版社, 2004.(WU Wang-yi.Fluid Mechanics [M]. Beijing: Peking University Press,2004.(in Chinese))
    [22]
    Acheson D J.Elementary Fluid Dynamics [M]. New York: Oxford University Press Inc, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1570) PDF downloads(719) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return