Citation: | PANG Guo-fei, CHEN Wen, ZHANG Xiao-di, SUN Hong-guang. Fractional Differential Phenomenological Modeling for Diffusion and Dissipation Behaviors of Complex Media[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1117-1134. doi: 10.3879/j.issn.1000-0887.2015.11.001 |
[1] |
SUN Hong-guang, ZHANG Yong, CHEN Wen, Reeves D M. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media[J].Journal of Contaminant Hydrology,2014,157(3): 47-58.
|
[2] |
Magin R L, Abdullah O, Baleanu D, Zhou X J. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation[J].Journal of Magnetic Resonance,2008,190(2): 255-270.
|
[3] |
GAO Qing, Srinivasan G, Magin R L, Zhou X J. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus[J].Journal of Magnetic Resonance Imaging,2011,33(5): 1177-1183.
|
[4] |
Milovanov A V, Rypdal K, Rasmussen J J. Stretched exponential relaxation and ac universality in disordered dielectrics[J].Physical Review B,2007,76(10): 104201.
|
[5] |
Uchaikin V, Sibatov R.Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems[M]. Hackensack, New Jersey: World Scientific, 2013.
|
[6] |
陈文,孙洪广,李西成,叶霖娟,胡帅,张晓棣,成亮. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010: 245-251.(CHEN Wen, SUN Hong-guang, LI Xi-cheng, YE Lin-juan, HU Shuai, ZHANG Xiao-di, CHENG Liang.Fractional Derivative Modeling in Mechanical and Engineering Problems.Beijing: Science Press, 2010: 245-251.(in Chinese))
|
[7] |
Magin R L, Lngo C, Colon-Perez L, Triplett W, Mareci T H. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy[J].Microporous and Mesoporous Materials,2013,178(18): 39-43.
|
[8] |
Zaslasvsky G M. Chaos, fractional kinetics, and anomalous transport[J].Physics Reports—Review Section of Physics Letters,2002,371(6): 461-580.
|
[9] |
Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J].Physics Reports—Review Section of Physics Letters,2000,339(1): 1-77.
|
[10] |
CHEN Wen. Time-space fabric underlying anomalous diffusion[J].Chaos, Solitons and Fractals,2005,28(4): 923-929.
|
[11] |
CHEN Wen, SUN Hong-guang, ZHANG Xiao-di, Koroak D. Anomalous diffusion modeling by fractal and fractional derivatives[J].Computers & Mathematics With Applications,2010,59(5): 1754-1758.
|
[12] |
Mainardi F.Fractional Calculus and Waves in Linear Viscoelasticity.London: Imperial College Press, 2010.
|
[13] |
Samko S G, Kilbas A A, Marichev O I.Fractional Integrals and Derivatives: Theory and Applications.London: Gordon and Breach Science Publishers, 1993.
|
[14] |
Park H W, Choe J, Kang J M. Pressure behavior of transport in fractal porous media using a fractional calculus approach[J].Energy Sources,2000,22(10): 881-890.
|
[15] |
Fomin S A, Chugunov V A, Hashida T. Non-Fickian mass transport in fractured porous media[J].Advances in Water Resources,2011,34(2): 205-214.
|
[16] |
Shlesinger M F, West B J, Klafter J. Lévy dynamics of enhanced diffusion: application to turbulence[J].Physical Review Letters,1987,58(11): 1100-1103.
|
[17] |
Brockmann D. Money circulation science-fractional dynamics in human mobility[C]// Anomalous Transport: Foundations and Applications.Berlin: Wiley-VCH, 2008: 459-483.
|
[18] |
Hilfer R, ed.Applications of Fractional Calculus in Physics [C]. Singapore: World Scientific, 2000.
|
[19] |
Sokolov I M, Klafter J, Blumen A. Fractional kinetics[J].Physics Today, 2002,55(11): 48-55.
|
[20] |
Benson D A, Meerschaert M M, Revielle J. Fractional calculus in hydrologic modeling: a numerical perspective[J].Advances in Water Resources,2013,51(1): 479-497.
|
[21] |
Magin R L. Fractional calculus in bioengineering—part 1[J].Critical ReviewsTM in Biomedical Engineering,2004,32(1): 1-104.
|
[22] |
Magin R L. Fractional calculus in bioengineering—part 2[J].Critical ReviewsTM in Biomedical Engineering,2004,32(2): 105-193.
|
[23] |
Magin R L. Fractional calculus in bioengineering—part 3[J].Critical ReviewsTM in Biomedical Engineering,2004,32(3/4): 195-377.
|
[24] |
Atanackovic T M, Pilipovic S, Stankovic B, Zorica D.Fractional Calculus With Applications in Mechanics: Vibrations and Diffusion Processes.USA: John Wiley & Sons Inc, 2014.
|
[25] |
Atanackovic T M, Pilipovic S, Stankovic B, Zorica D.Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles .USA: John Wiley & Sons Inc, 2014.
|
[26] |
Kimmich R, Fatkullin N, Kehr M, LI Yu-jie. Anomalous molecular displacement laws in porous media and polymers probed by nuclear magnetic resonance techniques[C]// Anomalous Transport: Foundations and Applications.Berlin: Wiley-VCH, 2008: 485-518.
|
[27] |
Fogedby H C. Lévy flights in random environments[J].Physical Review Letters,1994,73(19): 2517-2520.
|
[28] |
Huges B D. Random Walks and Random Environments, Volume 〖STBX〗1.Oxford: Oxford University Press, 1995.
|
[29] |
Magin R L, LI Wei-guo, Velasco M P, Trujillo J, Reiter D A, Morgenstern A, Spencer R G. Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models[J]. Journal of Magnetic Resonance,2011,210(2): 184-191.
|
[30] |
Solomon T H, Weeks E R, Swinney H L. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow[J].Physical Review Letters,1993,71(24): 3975-3978.
|
[31] |
Caputo M. Models of flux in porous media with memory[J].Water Resources Research,2000,36(3): 693-705.
|
[32] |
Caputo M, Plastino W. Diffusion in porous layers with memory[J].Geophyscial Journal International,2004,158(1): 385-396.
|
[33] |
Espinosa-Paredes G, Morales-Sandoval J B, Vázquez-Rodríguez R, Espinosa-Martiez E G. Constitutive laws for the neutron density current[J].Annals of Nuclear Energy,2008,35(10): 1963-1967.
|
[34] |
Benson D A, Wheatcraft S W, Meerschaert M M. Application of a fractional advection-dispersion equation[J].Water Resources Research,2000,36(6): 1403-1412.
|
[35] |
Benson D A, Wheatcraft S W, Meerschaert M M. The fractional-order governing equation of Lévy motion[J].Water Resources Research,2000,36(6): 1413-1423.
|
[36] |
Povstenko Y Z. Fractional heat conduction equation and associated thermal stress[J].Journal of Thermal Stresses,2004,28(1): 83-102.
|
[37] |
Povstenko Y Z. Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation[J].International Journal of Solids and Structures,2007,44(7/8): 2324-2348.
|
[38] |
Mongioví M S, Zingales M. A non-local model of thermal energy transport: the fractional temperature equation[J].International Journal of Heat and Mass Transfer,2013,67(12): 593-601.
|
[39] |
Zingales M. Fractional-order theory of heat transport in rigid bodies[J].Communications in Nonlinear Science and Numerical Simulations,2014,19(11): 3938-3953.
|
[40] |
Bobaru F, Duangpanya M. The peridynamic formulation for transient heat conduction[J].International Journal of Heat and Mass Transfer,2010,53(19/20): 4047-4059.
|
[41] |
Paola M D, Zingales M. Long-range cohesive interactions of non-local continuum faced by fractional calculus[J].International Journal of Solids and Structures,2008,45(21): 5642-5659.
|
[42] |
Carpinteri A, Cornetti P, Sapora A. Nonlocal elasticity: an approach based on fractional calculus[J].Meccanica,2014,49(11): 2551-2569.
|
[43] |
Morales-Casique E, Neuman S P, Guadagnini A. Non-local and localized analyses of non-reactive solute transport in bounded randomly heterogeneous porous media: theoretical framework[J].Advances in Water Resources,2006,29(8): 1238-1255.
|
[44] |
Benson D A. The fractional advection-dispersion equation: development and application[D]. PhD Thesis. Reno: University of Nevada, 1998.
|
[45] |
Navaneethakrishnan R P. Stream transient storage modeling based on fractional-in-space dispersion[D]. PhD Thesis. Michigan: Michigan State University, 2007.
|
[46] |
Meerschaert M M, Benson D A, Bumer B. Multidimensional advection and fractional dispersion[J].Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics,1999,59(5): 5026-5028.
|
[47] |
Meerschaert M M, Benson D A,Bumer B. Operator Lévy motion and multiscaling anomalous diffusion[J]. Physical Review E,2001,63(2): 142.
|
[48] |
Schumer R, Benson D A, Meerschaert M M, Baeumer B. Multiscaling fractional advection-dispersion equations and their solutions[J].Water Resources Research,2003,39(1): 1022.
|
[49] |
Benson D A, Tadjeran C, Meerschaert M M, Farnham I, Pohll G. Radial fractional-order dispersion through fractured rock[J].Water Resources Research,2004,40(12): 87.
|
[50] |
SUN Hong-guang, CHEN Wen, CHEN Yang-quan. Variable-order fractional differential operators in anomalous diffusion modeling[J].Physica A: Statistical Mechanics and Its Applications,2009,388(21): 4586-4592.
|
[51] |
SUN Hong-guang, CHEN Wen, SHENG Hu, CHEN Yang-quan. On mean square displacement behaviors of anomalous diffusions with variable and random orders[J].Physics Letters A,2010,374(7): 906-910.
|
[52] |
CHEN Dong, SUN Hong-guang, ZHANG Yong. Fractional dispersion equation for sediment suspension[J].Journal of Hydrology,2013,491(1): 13-22.
|
[53] |
Podlubny I.Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.USA: Academic Press, 1999: 74.
|
[54] |
Eringen A C. Linear theory of nonlocal elasticity and dispersion of plane waves[J].International Journal of Engineering Science,1972,10(5): 425-435.
|
[55] |
Eringen A C, Speziale C G, Kim B S. Crack-tip problem in non-local elasticity[J].Journal of the Mechanics and Physics of Solids,1977,25(5): 339-355.
|
[56] |
Klages R, Radons G, Sokolov I M, ed.Anomalous Transport: Foundations and Applications[C]. Berlin: Wiley-VCH, 2008.
|
[57] |
Zaslavsky G M.Hamiltonian Chaos & Fractional Dynamics.New York: Oxford University Press, 2008.
|
[58] |
徐明瑜, 谭文长. 中间过程、 临界现象——分数阶算子理论、 方法、 进展及其在现代力学中的应用[J]. 中国科学 G辑: 物理学 力学 天文学, 2006,36(3): 225-238.(XU Ming-yu,TAN Wen-chang. Intermediate process and critical phenomenon—theory, method, and advances of fractional operators and its applications in modern mechanics[J].Science in China Series G: Physics, Mechanics & Astronomy,2006,36(3): 225-238.(in Chinese))
|
[59] |
Mandelbrot B B.The Fractal Geometry of Nature.New York: W H Freeman and Company, 1982.
|
[60] |
Kanno R. Representation of random walk in fractal space-time[J].Physica A,1998,248(1/2): 165-175.
|
[61] |
孙洪广, 常爱莲, 陈文, 张勇. 反常扩散: 分数阶导数建模及其在环境流动中的应用[J]. 中国科学: 物理学 力学 天文学, 2015,45(10): 104702.(SUN Hong-guang, CHANG Ai-lian, CHEN Wen, ZHANG Yong. Anomalous diffusion: fractional derivative modeling and its application in environment fluid[J].Scientia Sinica: Physica, Mechanica & Astronomica,2015, 45(10): 104702.(in Chinese))
|
[62] |
SUN Hong-guang, CHEN Wen. Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence[J].Science in China Series E: Technological Sciences,2009,52(3): 680-683.
|
[63] |
Balankin A S, Elizarraraz B E. Hydrodynamics of fractal continuum flow[J].Physical Review E,2012,85(2): 605-624.
|
[64] |
SUN Hong-guang, Meerschaert M M, ZHANG Yong, ZHU Jian-ting, CHEN Wen. A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media[J].Advances in Water Resources,2013,52(4): 292-295.
|
[65] |
Meyers M A, Chawla K K.Mechanical Behavior of Materials.New York: Cambridge University Press, 2008: 120-121.
|
[66] |
Rouse P E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers[J].Journal of Chemical Physics,1953,21(7): 1272-1280.
|
[67] |
Ferry J D, Landel R F, Williams M L. Extensions of the rouse theory of viscoelastic properties to undiluted linear polymers[J].Journal of Applied Physics,1955,26(4): 359-362.
|
[68] |
Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures[J].AIAA Journal,1985,23(6): 918-925.
|
[69] |
Schiessel H, Blumen A. Hierarchical analogues tofractional relaxation equations[J].Journal of Physics A: Mathematical and General,1993,26(19): 5057-5069.
|
[70] |
Koh C G, Kelly J M. Application of fractional derivatives to seismic analysis of base-isolated models[J].Earthquake Engineering & Structural Dynamics,1990,19(2): 229-241.
|
[71] |
Schiessel H, Friedrich C, Blumen A. Applications to problems in polymer physics and rheology[C]//Applications of Fractional Calculus in Physics.Singapore: World Scientific, 2000: 331-376.
|
[72] |
Sabatier J, Agrawal O P, Tenreiro Machado J A, ed.Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering[C]. Netherlands: Springer, 2007.
|
[73] |
Rossikhin Y A, Shitikova M V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results[J].Applied Mechanics Reviews,2009,63: 010801.
|
[74] |
Rossikhin Y A. Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids[J].Applied Mechanics Reviews,2009,63(1): 2809-2814.
|
[75] |
Usuki T. Dispersion curves for 3D viscoelastic beams of solid circular cross section with fractional derivatives[J].Journal of Sound and Vibration,2013,332(1): 126-144.
|
[76] |
Aguado J V, Abisset-Chavanne E, Cueto E, Chinesta F, Keunings R. Fractional modeling of functionalized CNT suspensions[J].Rheologic Acta,2015,54(2): 109-119.
|
[77] |
Di Paola M, Failla G, Zingales M. Physically-based approach to the mechanics of strong non-local linear elasticity theory[J].Journal of Elasticity,2009,97(2): 103-130.
|
[78] |
Szabo T L. Time domain wave equations for lossy media obeying a frequency power law[J].Journal of the Acoustical Society of America,1994,96(1): 491-500.
|
[79] |
CHEN Wen, Holm S. Modified Szabo’s wave equation models for lossy media obeying frequency power law[J].Journal of the Acoustical Society of America,2003,114(5): 2570-2574.
|
[80] |
CHEN Wen, Holm S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency[J].Journal of the Acoustical Society of America,2004,115(4): 1424-1430.
|
[81] |
Caputo M. Linear models of dissipation whose Q is almost frequency independent-II[J].Geophysical Journal of the Royal Astronomical Society,1967,13(5): 529-539.
|
[82] |
Holm S, Nsholm S P. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography[J].Ultrasound in Medicine and Biology,2013,40(4): 695-703.
|
[83] |
Bounam A, CHEN Wen. Computations for a breast ultrasonic imaging technique and finite element approach for a fractional derivative modeling the breast tissue acoustic attenuation[J].International Journal of Tomography & Statistics,2008,10(F08): 31-43.
|
[84] |
ZHANG Xiao-di, CHEN Wen, ZHANG Chuan-zeng. Modified Szabo’s wave equation for arbitrarily frequency-dependent viscous dissipation in soft matter with applications to 3D ultrasonic imaging[J].Acta Mechanica Solida Sinica,2012,25(5): 510-519.
|
[85] |
Holm S, Nsholm S P. A causal and fractional all-frequency wave equation for lossy media[J].Journal of the Acoustical Society of America,2011,130(4): 2195-2202.
|
[86] |
Kelly J F, McGough R J. Analytical time-domain Green’s functions for power-law media[J].Journal of the Acoustical Society of America,2008,124(5): 2861-2872.
|
[87] |
Treeby B E, Cox B T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian[J].Journal of the Acoustical Society of America,2010,127(5): 2741-2748.
|
[88] |
Butera S, Paola M D. A physically based connection between fractional calculus and fractal geometry[J].Annals of Physics,2014,350: 146-158.
|
[89] |
Alaimo G, Zingales M. Laminar flow through fractal porous materials: the fractional-order transport equation[J].Communications in Nonlinear Science and Numerical Simulation,2015,22(1/3): 889-902.
|
[90] |
Tarasov V E.Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media.Beijing: Higher Education Press, 2010: 24.
|
[91] |
HE Ji-huan. A tutorial review on fractal spacetime and fractional calculus[J]. International Journal of Theoretical Physics,2014,53(11): 3698-3718.
|
[92] |
Machado J T, Mainardi F, Kiryakova V. Fractional calculus: quo vadimus?(Where are we going?)[J].Fractional Calculus & Applied Analysis,2015,18(2): 495-526.
|