LI Peng-zhu, LI Feng-jun, LI Xing, ZHOU Yue-ting. A Numerical Method for the Solutions to Nonlinear Dynamic Systems Based on Cubic Spline Interpolation Functions[J]. Applied Mathematics and Mechanics, 2015, 36(8): 887-896. doi: 10.3879/j.issn.1000-0887.2015.08.010
Citation: LI Peng-zhu, LI Feng-jun, LI Xing, ZHOU Yue-ting. A Numerical Method for the Solutions to Nonlinear Dynamic Systems Based on Cubic Spline Interpolation Functions[J]. Applied Mathematics and Mechanics, 2015, 36(8): 887-896. doi: 10.3879/j.issn.1000-0887.2015.08.010

A Numerical Method for the Solutions to Nonlinear Dynamic Systems Based on Cubic Spline Interpolation Functions

doi: 10.3879/j.issn.1000-0887.2015.08.010
Funds:  The National Natural Science Foundation of China(11261024;11472193;11362108)
  • Received Date: 2014-11-25
  • Rev Recd Date: 2015-04-27
  • Publish Date: 2015-08-15
  • The cubic spline interpolation function has good convergence, stability and 2nd-order smoothness. A numerical method for the solutions to nonlinear dynamic systems was constructed with the cubic spline interpolation functions. Advantages and disadvantages were compared between this method and the previous numerical methods for nonlinear dynamic systems, with the error estimation conducted in the 2 numerical examples. The results show that the numerical method derived out of the cubic spline interpolation functions has faster convergence rate and higher accuracy than the existing methods, and has good approximation to the analytical solutions to nonlinear dynamic systems.
  • loading
  • [1]
    凌复华. 非线性动力系统的数值研究[M]. 上海: 上海交通大学出版社, 1989.(LING Fu-hua. Numerische Untersuchung Uichtlinearer Dynamischer System [M]. Shanghai: Shanghai Jiaotong University Press, 1989.(in Chinese))
    [2]
    刘向军, 石磊, 徐旭常. 稠密气固两相流欧拉-拉格朗日法的研究现状[J]. 计算力学学报, 2007,24(2): 166-172.(LIU Xiang-jun, SHI Lei, XU Xu-chang. Activities of dense particle-gas two-phase flow modeling in Eulerian-Lagrangian approach[J]. Chinese Journal of Computational Mechanics,2007,24(2): 166-172.(in Chinese))
    [3]
    刘石, 陈德祥, 冯永新, 徐自力, 郑李坤. 等几何分析的多重网格共轭梯度法[J]. 应用数学和力学, 2014,35(6): 630-639.(LIU Shi, CHEN De-xiang, FENG Yong-xin, XU Zi-li, ZHENG Li-kun. A multigrid preconditioned conjugate gradient method for isogeometric analysis[J]. Applied Mathematics and Mechanics,2014,35(6): 630-639.(in Chinese))
    [4]
    陈全发,肖爱国. Runge-Kutta-Nystrom方法的若干新性质[J]. 计算数学, 2008,30(2): 201-212.(CHEN Quan-fa, XIAO Ai-guo. Some new properties of Runge-Kutta-Nystrom methods[J]. Mathematica Numerica Sinica,2008,30(2): 201-212.(in Chinese))
    [5]
    樊文欣, 杨桂通, 岳文忠. 基于ADAMS的发动机动力学通用分析模型[J]. 应用基础与工程科学学报, 2009,17(S1): 172-178.(FAN Wen-xin, YANG Gui-tong, YUE Wen-zhong. The dynamic unicersal analysis model of engine based on ADAMS[J]. Jouranl of Basic Science and Engineering,2009,17(S1): 172-178.(in Chinese))
    [6]
    陈会光, 王雨时, 闻泉. 用Gear法求解病态的引信球转子运动常微分方程组[J]. 探测与控制学报, 2008,30(4): 30-36.(CHEN Hui-guang, WANG Yu-shi, WEN Quan. Solution to stiff ordinary differential equations on the movement of fuze ball rotor with gear method[J]. Journal of Detection & Control, 2008,30(4): 30-36.(in Chinese))
    [7]
    郑兆昌, 沈松, 苏志霄. 非线性动力学常微分方程组高精度数值积分方法[J]. 力学学报, 2003,35(3): 284-295.(ZHENG Zhao-chang, SHEN Song, SU Zhi-xiao. Accurate solution of non-linear dynamic systems by numerical integration method[J]. Acta Mechanica Sincia,2003,35(3): 284-295.(in Chinese))
    [8]
    覃婷婷, 张诚坚. 时滞积分微分方程的方法[J]. 应用数学, 2009,22(4): 908-912.(QIN Ting-ting, ZHANG Cheng-jian. Rosenbrock methods for delay integro-differential equations[J]. Mathematica Applcata,2009,22(4): 908-912.(in Chinese))
    [9]
    李庆阳, 王能超, 易大义. 数值分析[M]. 北京: 清华大学出版社, 2008.(LI Qing-yang, WANG Neng-chao, YI Da-yi. Nunmerical Analysis [M]. Beijing: Tsinghua University Press, 2008.(in Chinese))
    [10]
    余彦民, 汤一铭, 吴文. UHF波段Peano分形单极子天线的分析与设计[J]. 南京理工大学学报(自然科学版), 2008,32(1): 96-99.(YU Yan-min, TANG Yi-ming, WU Wen. Analysis and design of Peano fractal monopole antenna in UHF band[J]. Journal of Nanjing University of Science and Technology(Natural Science),2008,32(1): 96-99.(in Chinese))
    [11]
    谢进, 檀结庆, 李声峰. 一种带有参数的有理三次样条函数及其应用[J]. 应用数学学报, 2010,33(5): 847-854.(XIE Jin, TAN Jie-qing, LI Sheng-feng. A kind of rational cubic spline with parameters and its applications[J]. Acta Mathematicae Applicatae Sinica,2010,33(5): 847-854.(in Chinese))
    [12]
    刘卫国. MATLAB程序设计与应用[M]. 第5版. 北京: 高等教育出版社, 2008.(LIU Wei-guo. MATLAB Program Design and Application[M]. 5th ed. Beijing: Higher Education Press, 2008.(in Chinese))
    [13]
    苏志霄, 郑兆昌, 高永毅. 非线性动力系统线性模型数值计算的Taylor变换法[J]. 力学学报, 2002,34(4): 586-593.(SU Zhi-xiao, ZHENG Zhao-chang, GAO Yong-yi. The nunerical calculating for linearized model of non-linear dynamical system by Taylor transform method[J]. Acta Mechanica Sincia,2002,34(4): 586-593.(in Chinese))
    [14]
    GENG Fa-zhan, CUI Ming-gen, ZHANG Bo. Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods[J]. Nonlinear Analysis: Real World Applications,2010,11(2): 637-644.
    [15]
    CAI Li, NIE Yu-feng, XIE Wen-xian, ZHANG Wei-wei. Numerical path integration method based on bubble grids for nonlinear dynamical systems[J].Applied Mathematical Modelling,2013,37(3): 1490-1501.
    [16]
    Kudryashov N A. Meromorphic solutions of nonlinear ordinary differential equations[J].Communications in Nonlinear Science and Numerical Simulatio,2010,15(10): 2778-2790.
    [17]
    Nik H S, Soleymani F. A Taylor-type numerical method for solving nonlinear ordinary differential equations[J].Alexandria Engineering Journal,2013,52(3): 543-550.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1914) PDF downloads(1278) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return