LUO Zhen-dong, XU Yuan. A Reduced-Order Extrapolating FDM for Conserved High-Order Anisotropic Traffic Flow Models[J]. Applied Mathematics and Mechanics, 2015, 36(8): 875-886. doi: 10.3879/j.issn.1000-0887.2015.08.009
Citation: LUO Zhen-dong, XU Yuan. A Reduced-Order Extrapolating FDM for Conserved High-Order Anisotropic Traffic Flow Models[J]. Applied Mathematics and Mechanics, 2015, 36(8): 875-886. doi: 10.3879/j.issn.1000-0887.2015.08.009

A Reduced-Order Extrapolating FDM for Conserved High-Order Anisotropic Traffic Flow Models

doi: 10.3879/j.issn.1000-0887.2015.08.009
Funds:  The National Natural Science Foundation of China(11271127)
  • Received Date: 2015-03-16
  • Rev Recd Date: 2015-07-03
  • Publish Date: 2015-08-15
  • A reduced-order extrapolating finite difference method (FDM) with sufficiently high accuracy and very few degrees of freedom for conserved high-order anisotropic traffic flow models was established by means of the Godunov fluid method and the POD technique. The error estimate of the reduced-order approximate solutions and the algorithm implementation of the reduced-order extrapolating difference scheme were presented. Finally, a numerical example was used to illustrate that the results of the proposed method were consistent with those of the classic difference scheme. Moreover, the high efficiency and sufficient accuracy of the reduced-order extrapolating simulation method are shown.
  • loading
  • [1]
    Payne H J. Models of freeway traffic and control[C]// Part of the Simulation Councils Proceeding Series . Mathematical Models of Public Systems, 1971: 51-60.
    [2]
    Daganzo C F. Requiem for second-order fluid approximations of traffic flow[J].Transportation Research, Part B: Methodological, 1995,29(4): 277-286.
    [3]
    Aw A, Rascle M. Resurrection of “second order” models of traffic flow[J].SIAM Journal of Applied Mathematics,2000,60(3): 916-938.
    [4]
    Fukunaga K.Introduction to Statistical Recognition [M]. New York: Academic Press, 1990.
    [5]
    Zhang H M. A non-equilibrium traffic model devoid of gas-like behavior[J].Transportation Research, Part B: Methodological,2002,36(3): 275-290.
    [6]
    ZHANG Peng, Wong S C, Dai S Q. A conserved higher-order anisotropic traffic flow model: description of equilibrium and nonequilibrium flows[J].Transportation Research, Part B: Methodological,2009,43(5): 562-574.
    [7]
    Holmes P, Lumley J L, Berkooz G.Turbulence, Coherent Structures, Dynamical Systems and Symmetry [M]. Cambridge: Cambridge University Press, 1996.
    [8]
    Fukunaga K.Introduction to Statistical Recognition [M]. New York: Academic Press, 1990.
    [9]
    Jolliffe I T.Principal Component Analysis [M]. Berlin: Springer-Verlag, 2002.
    [10]
    LUO Zhen-dong, ZHOU Yan-jie, YANG Xiao-zhong. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J].Applied Numerical Mathematics, 2009, 59(8): 1933-1946.
    [11]
    LI Huan-rong, LUO Zhen-dong, CHEN Jing. Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problem[J].Applied Mathematical Modeling, 2011, 35(5): 2489-2498.
    [12]
    LUO Zhen-dong, XIE Zheng-hui, CHEN Jing. A reduced MFE formulation based on POD for the non-stationary conduction-convection problems[J].Acta Mathematica Scientia, 2011, 31(5): 1765-1785.
    [13]
    LUO Zhen-dong, LI Hong, ZHOU Yan-jie, HUANG Xiao-ming. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J].Journal of Mathematical Analysis and Applications, 2012, 385(1): 310-321.
    [14]
    LUO Zhen-dong, CHEN Jing, Navon I M, YANG Xiao-zhong. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J].SIAM Journal on Numerical Analysis, 2008, 47(1): 1-19.
    [15]
    LUO Zhen-dong, WANG Rui-wen, ZHU Jiang. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J].Science in China Series A: Mathematics, 2007,50(8): 1186-1196.
    [16]
    孙萍, 罗振东, 周艳杰. 热传导对流方程基于POD的差分格式[J]. 计算数学, 2009,31(3): 323-334.(SUN Ping, LUO Zhen-dong, ZHOU Yan-jie. A FDS based on POD method for convection heat conduction equation[J].Mathematica Numerica Sinica, 2009, 31(3): 323-334.(in Chinese))
    [17]
    LUO Zhen-dong, LI Hong, ZHOU Yan-jie, XIE Zhen-hui. A reduced finite difference scheme and error estimates based on POD method for two-dimensional solute transport problems[J].Journal of Mathematical Analysis and Applications, 2012, 385(1): 371-383.
    [18]
    LUO Zhen-dong, DU Juan, XIE Zheng-hui, GUO Yan. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations[J].International Journal for Numerical Methods in Engineering, 2011, 88(1): 31-46.
    [19]
    LUO Zhen-dong, CHEN Jing, XIE Zheng-hui, AN Jing, SUN Ping. A reduced second-order time accurate finite element formulation based on POD for parabolic equations[J].Science in China for Series A: Mathematics, 2011, 41(5): 447-460.
    [20]
    罗振东, 欧秋兰, 谢亚辉. 非定常Stokes方程一种基于POD方法的简化有限差分格式[J]. 应用数学和力学, 2011, 32(7): 795-806.(LUO Zhen-dong, OU Qiu-lan, XIE Zheng-hui. A reduced finite difference scheme and error edtimates based on POD method for the non-stationary Stokes equation[J].Applied Mathematics and Mechanics, 2011, 32(7): 795-806.(in Chinese))
    [21]
    LUO Zhen-dong, CHEN Jing, ZHU Jiang, WANG Rui-wen, Navon I M. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model[J].International Journal for Numerical Methods in Fluids,2007, 55(2): 143-161.
    [22]
    LUO Zhen-dong, CHEN Jing, Navon I M, ZHU Jiang. An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems[J].International Journal for Numerical Methods in Fluid,2009, 60(4): 409-436.
    [23]
    罗振东, 高俊强, 孙萍, 安静. 交通流模型基于特征投影分解技术的外推降维有限差分格式[J]. 计算数学, 2013,35(2): 159-170.(LUO Zhen-dong, GAO Jun-qiang, SUN Ping, AN Jing. A extrapolation reduced-order FDS based on POD technique for traffic flow model[J].Mathematica Numerica Sinica, 2013,35(2): 159-170.(in Chinese))
    [24]
    LUO Zhen-dong, XIE Di, TENG Fei. A POD-based reduced-order FD extrapolating algorithm for traffic flow[J].Advances in Difference Equations,2014,2014(269): 1-13.
    [25]
    张文生. 科学计算中的偏微分方程有限差分方法[M]. 高等教育出版社, 2006.(ZHANG Wen-sheng.Finite Difference Methods for Partial Differential Equations in Science Computation [M]. Higher Education Press, 2006.(in Chinese))
    [26]
    刘儒勋, 舒其旺. 计算流体力学的若干新方法[M]. 北京: 科学出版社, 2003.(LIU Ru-xun, SHU Qi-wang.Several New Methods of Computational Fluid Dynamics [M]. Beijing: Science Press, 2003.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1584) PDF downloads(986) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return