Citation: | XU Guang-ying, WANG Jin-bao, HAN Zhi. Study on the Transient Temperature Field Based on the Fractional Heat Conduction Equation for Laser Heating[J]. Applied Mathematics and Mechanics, 2015, 36(8): 844-854. doi: 10.3879/j.issn.1000-0887.2015.08.006 |
[1] |
Vyawahare V A, Nataraj P S V. Fractional-order modeling of neutron transport in a nuclear reactor [J].Applied Mathematical Modeling,2013,37(23): 9747-9767.
|
[2] |
刘静. 微米/纳米尺度传热学[M]. 北京: 科学出版社, 2001: 161-163.(LIU Jing.Nano/Micro Scale Heat Transfer [M]. Beijing: Science Press, 2001: 161-163.(in Chinese))
|
[3] |
Joseph D D, Preziosi L. Heat waves[J].Reviews of Modern Physics,1989,61(1): 41-73.
|
[4] |
Cattaneo C. Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée[J].Comptes Rendus de l’Académie des Sciences,1958,247: 431-433.
|
[5] |
Vernotte P. Les paradoxes de la théorie continue de léquation de la chaleur[J].Compte Rendus,1958,246: 3154-3155.
|
[6] |
黄峰, 牛燕雄, 汪岳峰, 段晓峰. 光学窗口材料激光辐照热力效应的解析计算研究[J]. 光学学报, 2006,26(4): 576-580.(HUANG Feng, NIU Yan-xiong, WANG Yue-feng, DUAN Xiao-feng. Calculation of thermal and mechanical effect induced by laser in optical window materials[J].Acta Optica Sinica,2006,26(4): 576-580.(in Chinese))
|
[7] |
黄海明, 孙岳. 脉冲强激光辐照下材料响应的非傅里叶效应[J]. 强激光与粒子束, 2009,21(6): 808-812.(HUANG Hai-ming, SUN Yue. Non-Fourier response of target irradiated by multi-pulse high power laser[J].High Power Laser and Particle Beam,2009,21(6): 808-812.(in Chinese))
|
[8] |
Yilbas B S, Al-Aqeeli N. Analytical investigation into laser pulse heating and thermal stresses[J].Optics & Laser Technology,2009,41(2): 132-139.
|
[9] |
Yilbas B S, Al-Dweik A Y. Laser short pulse heating of metal nano-wires[J].Physica B: Condensed Matter,2012,407(22): 4473-4477.
|
[10] |
Yilbas B S, Al-Dweik A Y, Bin Mansour S. Analytical solution of hyperbolic heat conduction equation in relation to laser short-pulse heating[J].Physica B: Condensed Matter,2011,406(8): 1550-1555.
|
[11] |
JIANG Fang-ming, LIU Deng-ying, ZHOU Jian-hua. Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse[J].Microscale Thermophysical Engineering,2003,6(4): 331-346.
|
[12] |
蒋方明, 刘登瀛. 多孔材料内非傅里叶导热现象的实验研究结果及理论分析[J]. 工程热物理学报, 2001,22(增刊): 77-80.(JIANG Fang-ming, LIU Deng-ying. Experimental and analytical results of non-Fourier conduction phenomenon in porous material[J].Journal of Engineering Thermophysics,2001,22(Suppl): 77-80.(in Chinese))
|
[13] |
Scott Blair G W.The role of psychophysics in rheology[J].Journal of Colloid Science,1947,2(1): 21-32.
|
[14] |
Gerasimov A N. A generalization pf linear laws of deformation and its application to inner friction problems[J].Prikl Matem i Mekh,1948,12(3): 251-259.(in Russian)
|
[15] |
Hilfer R.Applications of Fractional Calculus in Physics [M]. Singapore: World Scientific, 2000.
|
[16] |
Metzler R,Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J].Physics Reports,2000,339(1): 1-77.
|
[17] |
Compte A, Metzler R. The generalized Cattaneo equation for the description of anomalous transport process[J].Journal of Physics A: Mathematical and General,1997,30(21): 7277-7289.
|
[18] |
Povstenko Y Z. Fractional Cattaneo-type equations and generalized thermo-elasticity[J].Journal of Thermal Stresses,2011,34(2): 97-114.
|
[19] |
王颖泽, 王谦, 刘栋, 宋新南. 弹性半空间热冲击问题的广义热弹性解[J]. 应用数学和力学, 2014,35(6): 640-651.(WANG Ying-ze, WANG Qian, LIU Dong, SONG Xin-nan. Generalized thermoelastic solutions to the problems of thermal shock on elastic half space[J].Applied Mathematics and Mechanics,2014,35(6): 640-651.(in Chinese))
|
[20] |
QI Hai-tao, XU Huan-ying, GUO Xin-wei. The Cattaneo-type time fractional heat conduction equation for laser heating[J].Computers & Mathematics With Applications,2013,66(5): 824-831.
|
[21] |
Tzou D Y.Macro- to Microscale Heat Transfer: The Lagging Behavior [M]. Washington DC: Taylor & Francis, 1996: 1-64.
|
[22] |
Odibat Z M, Shawagfeh N T. Generalized Taylor’s formula[J].Applied Mathematics and Computation,2007,186(1): 286-293.
|
[23] |
Podlubny I.Fractional Differential Equations [M]. New York: Academic Press, 1999: 150.
|
[24] |
NIU Tian-chan, DAI Wei-zhong. A hyperbolic two-step model based finite difference scheme for studying thermal deformation in a double-layered thin film exposed to ultra-short-pulsed lasers[J].International Journal of Thermal Sciences,2009,48(1): 34-49.
|
[25] |
Xu M Y, Tan W C. Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics[J].Science China: Physics, Mechanics & Astronomy,2006,49(3): 257-272.
|