Citation: | PENG Bo, TANG Shuo. A Modified Laplace-Homotopy Perturbation Algorithm[J]. Applied Mathematics and Mechanics, 2015, 36(7): 768-778. doi: 10.3879/j.issn.1000-0887.2015.07.009 |
[1] |
搂森岳, 唐晓艳. 非线性数学物理方法[M]. 北京: 科学出版社, 2006.(LOU Sen-yue, TANG Xiao-yan. The Method of Nonlinear Mathematical and Physical[M]. Beijing: Science Press, 2006.(in Chinese))
|
[2] |
谷超豪, 胡和生, 周子翔. 孤立子理论中的达布变换及其几何应用[M]. 上海: 上海科学技术出版社, 1999.(GU Chao-hao, HU He-sheng, ZHOU Zi-xiang. Darboux Transformation in Soliton Theory and Its Geometric Applications[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1999.(in Chinese))
|
[3] |
陈登远. 孤子引论[M]. 北京: 科学出版社, 2006.(CHEN Deng-yuan. Soliton Introduction[M]. Beijing: Science Press, 2006.(in Chinese))
|
[4] |
Ablowit M J, Clarkson P A. Solitons Nonlinear Evolution Equations and Inverse Scattering[M]. 世界图书出版公司北京公司, 2000.
|
[5] |
Golbabai A, Javidi M. A third-order Newton type method for nonlinear equations based on modified homotopy perturbation method[J]. Applied Mathematics and Computation,2007,191(1): 199-205.
|
[6] |
WANG Fei, LI Wei, ZHANG Hong-qing. A new extended homotopy perturbation method for nonlinear differential equations[J]. Mathematical and Computer Modelling,2012,55(3/4): 1471-1477.
|
[7] |
HE Ji-huan. Homotopy perturbation method: a new nonlinear analytical technique[J]. Applied Mathematics and Computation,2003,135(1): 73-79.
|
[8] |
Biazar J, Ghazvini H. Convergence of the homotopy perturbation method for partial differential equations[J]. Nonlinear Analysis: Real World Applications,2009,10(6): 2633-2640.
|
[9] |
Adomian G. Nonlinear stochastic differential equations[J]. Journal of Mathematical Analysis and Applications,1976,12(55): 441- 452.
|
[10] |
Adomian G, Adomian G E. A global method for solution of complex systems[J]. Mathematical Modelling,1984, 5(4): 251-263.
|
[11] |
Lyapunov A M. The General Problem on Stability of Motion[M]. London: Taylor & Francis, 1992.
|
[12] |
Skirmishing A V, Zhukov A T, Kolovos V G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M]. Moscow: Mashinoxstroyenie, 1990.
|
[13] |
LIAO Shi-jun. Proposed homotopy analysis technique for the solution of nonlinear problems[D]. Ph D Thesis. Shanghai: Shanghai Jiao Tong University, 1992.
|
[14] |
LIAO Shi-jun. A kind of approximate solution technique which does not depend upon small parameters—II: an application in fluid mechanics[J]. International Journal of Non-Linear Mechanics,1997,32(5): 815-822.
|
[15] |
Filobello-Nino U, Vazquez-Leal H, Benhammouda B, Hernandez-Martinez L, Hoyos-Reyes C, Perez-Sesma J A, Jimenez-Fernandez V M, Pereyra-Diaz D, Marin-Hernandez A, Diaz-Sanchez A, Huerta-Chua J, Cervantes-Perez J. Nonlinearities distribution Laplace transform-homotopy perturbation method[J]. Springer Plus,2014,28(3): 1-13.
|
[16] |
Vazquez-Leal H, Sarmiento-Reyes A, Khan Y, Flabella-Nino U, Diaz-Sanchez A. Rational biparameter homotopy perturbation method and Laplace-Paden coupled version[J]. Journal of Applied Mathematics,2012,23(21): 456-467.
|
[17] |
LIAO Shi-jun. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. Chapman & Hall/Croppers, 2003.
|
[18] |
Marinca V, Harrison N. Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer[J]. International Communications in Heat and Mass Transfer,2008,35(6): 710-715.
|
[19] |
Marinca V, Hersanu N. An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate[J]. Applied Mathematics Letters,2009,22(2): 245-251.
|
[20] |
牛照. 非线性问题中的优化同伦分析方法[D]. 硕士学位论文. 上海: 上海交通大学, 2010.(NIU Zhao. Optimized homotopy method in nonlinear problem[D]. Master Thesis. Shanghai: Shanghai Jiao Tong University, 2010.(in Chinese))
|