Citation: | LIU Jie, HUANG Jun-jie, Alatancang. An Operator Semigroup Method for Rectangular Plates With 2 Opposite Sides Simply Supported[J]. Applied Mathematics and Mechanics, 2015, 36(7): 733-743. doi: 10.3879/j.issn.1000-0887.2015.07.006 |
[1] |
Sokolnikoff I S. Mathematical Theory of Elasticity [M]. 2nd ed. New York: McGraw-Hill Book Co Inc, 1956.
|
[2] |
钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.(ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity [M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese))
|
[3] |
王华, 阿拉坦仓, 黄俊杰. 弹性理论中上三角无穷维Hamilton算子根向量组的完备性[J]. 应用数学和力学, 2012,33(3): 366-378.(WANG Hua, Alatancang, HUANG Jun-jie. Completeness of the system of root vectors of upper triangular infinite-dimensional Hamiltonian operators appearing in elasticity theory[J]. Applied Mathematics and Mechanics,2012,〖STHZ〗 33(3): 366-378.(in Chinese))
|
[4] |
LI Rui, ZHONG Yang, LI Ming. Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method[J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences,2013,469(2153): 20120681.
|
[5] |
Lim C W, Cui S, Yao W. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported[J]. International Journal of Solids and Structures,2007,44(16): 5396-5411.
|
[6] |
Eburilitu, Alatancang. Symplectic eigenfunction expansion approach for a class of rectangular plates[J]. Mathematica Applicata,2013,26(1): 80-88.
|
[7] |
Lim C, Xu X. Symplectic elasticity: theory and applications[J]. Applied Mechanics Reviews,2010,63(5): 050802.
|
[8] |
ZHANG Guo-ting, HUANG Jun-jie, Alatancang. Eigen-vector expansion theorem of a class of operator matrices appearing in elasticity and applications[J]. Acta Physica Sinica,2012,〖STHZ〗 61(14): 140205.
|
[9] |
侯国林, 阿拉坦仓. 对边简支的矩形平面弹性问题的辛本征展开定理[J]. 应用数学和力学, 2010,31(10): 1181-1190.(HOU Guo-lin, Alatancang. Symplectic eigenfunction expansion theorem for the rectangular plane elasticity problems with two opposite simply supported[J]. Applied Mathematics and Mechanics,2010,31(10): 1181-1190.(in Chinese))
|
[10] |
HUANG Jun-jie, Alatancang, WANG Hua. Completeness of the system of eigenvectors of off-diagonal operator matrices and its applications in elasticity theory[J]. Chinese Physics B,2010,19(12): 120201-1-120201-9.
|
[11] |
Goldstein J A. Semigroups of Linear Operators and Applications [M]. New York: Oxford University Press, 1985.
|
[12] |
Engel K J, Nagel R. One Parameter Semigroups for Linear Evolution Equations [M]. Graduate Texts in Mathematics 194. New York: Springer-Verlag, 2000.
|
[13] |
Webster J T. Weak and strong solutions of a nonlinear subsonic flow-structure interaction: semigroup approach[J].Nonlinear Analysis,2011,74(10): 3123-3136.
|
[14] |
阿拉坦仓, 张鸿庆, 钟万勰. 矩阵多元多项式的带余除法及其应用[J]. 应用数学和力学, 2000,21(7): 661-668.(Alatancang, ZHANG Hong-qing, ZHONG Wan-xie. Pseudo-division algorithm for matrix multivariable polynomial and its application[J]. Applied Mathematics and Mechanics,2000,21(7): 661-668.(in Chinese))
|
[15] |
Kato T. Perturbation Theory for Linear Operators [M]. Classics in Mathematics. Berlin: Springer-Verlag, 1995.(reprint of the 1980 edition)
|