CHEN Li-juan, LU Shi-ping. Periodic Orbits of Electric Particles Sporting in Neutral Sheet Magnetic Field Without Dawn-Dusk Electric Field[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1280-1286. doi: 10.3879/j.issn.1000-0887.2014.11.011
Citation: CHEN Li-juan, LU Shi-ping. Periodic Orbits of Electric Particles Sporting in Neutral Sheet Magnetic Field Without Dawn-Dusk Electric Field[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1280-1286. doi: 10.3879/j.issn.1000-0887.2014.11.011

Periodic Orbits of Electric Particles Sporting in Neutral Sheet Magnetic Field Without Dawn-Dusk Electric Field

doi: 10.3879/j.issn.1000-0887.2014.11.011
Funds:  The National Natural Science Foundation of China(11271197)
  • Received Date: 2014-04-11
  • Rev Recd Date: 2014-09-22
  • Publish Date: 2014-11-18
  • In order to describe the dynamic characteristics of the electric particles sporting in neutral sheet magnetic field without dawn-dusk electric field, a nonlinear motion model was proposed. Based on the Mawhin’s continuation theorem, the existence of periodic solutions to a class of nonlinear problems was discussed, and wherery, the problem of periodic solution of electric particles sporting in neutral sheet magnetic field without dawn-dusk electric field was investigated. Under the given initial conditions, a result about the existence of periodic orbits of the model was obtained. Furthermore, based on our result, other dynamic behaviours of the model, such as the homoclinic orbits can are to discussed.
  • loading
  • [1]
    Volland H. Models of global electric fields within the magnetosphere[J].Annales de Geophysique,1975,31(1): 154-163.
    [2]
    Chen J. Nonlinear dynamics of charge particle in the magnetotail[J].Journal of Geophysical Research,1992,97(A10): 15011-15017.
    [3]
    XU Rong-lan, ZHU Ming. Particle precipitation from the magnetotail during substorm[J].Scientia Sinica, A,1995,38(1): 92-106.
    [4]
    Tsyganenko N A. Modeling the Earth’s magnetosphere magnetic field confined within a realistic magnetopause[J].Journal of Geophysical Research: Space Physics,1995,100(A4): 5599-5615.
    [5]
    徐荣栏. 带电粒子在中性线磁场中运动的解析轨道[J]. 空间科学学报, 1981,1(1): 1-8.(XU Rong-lan. The analytical orbits of charged particles sporting in neutral sheet magnetic field[J].Chinese Journal of Space Science,1981,1(1): 1-8.(in Chinese))
    [6]
    徐荣栏, 宛振福, 马福胜. 带电粒子在中性线磁场中的运动[J]. 地球物理学报, 1980,23(3): 233-241.(XU Rong-lan, WAN Zhen-fu, MA Fu-sheng. The sporting of charged particles in neutral sheet magnetic field[J].Chinese Journal of Geophysics,1980,23(3): 233-241.(in Chinese))
    [7]
    XU Rong-lan. The analytical trajectory of the charged particle moving in neutral sheet magnetic field[J].Proceeding of an International School and Workshop of Plasma Astrophysics,1981,7: 421-429.
    [8]
    XU Rong-lan. Particle dynamics and current in the magnetotail[J].Astrophysics and Space Sciences,1988,144(1/2): 257-277.
    [9]
    徐荣栏, 李磊. 磁层粒子动力学[M]. 北京: 科学出版社, 2005.(XU Rong-lan, LI Lei.Dynamics of Magnetosphere Particle[M]. Beijing: Science Press, 2005.(in Chinese))
    [10]
    XU Rong-lan. Displayed neutral sheet model observed by the ISEE-2 satellite[J].Journal Atmosphere and Terrestrial Physics,1991,53: 12-23.
    [11]
    MO Jia-qi. A singularly perturbed reaction diffusion problem for the nonlinear boundary condition with two parameters[J].Chinese Physics B,2010,19(1): 010203-1-010203-4.
    [12]
    CHENG Rong-jun, GE Hong-xia. Analysis of the equal width wave equation with the mesh-free reproducing kernel particle Ritz method[J].Chinese Physics B,2012,21(10): 100209-1-100209-8.
    [13]
    王坤, 关新平, 乔杰敏. 一类相对转动非线性动力学系统周期解的唯一性与精确周期解[J]. 物理学报, 2010,59(6): 3648-3653.(WANG Kun, GUAN Xin-ping, QIAO Jie-min. Precise periodic solutions and uniqueness of periodic solutions of some relative rotation nonlinear dynamic system[J].Acta Physica Sinica,2010,59(6): 3648-3653.(in Chinese))
    [14]
    陈丽娟, 鲁世平. 一类太空等离子体单粒子运动模型的同宿轨[J]. 应用数学和力学, 2013,34(12): 1258-1265.(CHEN Li-juan, LU Shi-ping. Homoclinic orbit of the motion model for a single space plasma particle[J].Applied Mathematics and Mechanics,2013,34(12): 1258-1265.(in Chinese))
    [15]
    陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题[J]. 物理学报, 2013,62(20): 200201-1-200201-4.(CHEN Li-juan, LU Shi-ping. The problem of periodic solution of nonlinear model in zero-dimensional climate system[J].Acta Physica Sinica,2013,62(20): 200201-1-200201-4.(in Chinese))
    [16]
    Gaines R E, Mawhin J L.Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer, 1977.
    [17]
    LU Shi-ping. Homoclinic solutions for a nonlinear second-order differential systems with p-Laplacian operator[J].Nonlinear Analysis,2011,12(1): 525-534.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (899) PDF downloads(793) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return