GE Quan-wen. Lagrange High Order Cell-Centered Conservative Scheme in Cylindrical Geometry[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1218-1231. doi: 10.3879/j.issn.1000-0887.2014.11.005
Citation: GE Quan-wen. Lagrange High Order Cell-Centered Conservative Scheme in Cylindrical Geometry[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1218-1231. doi: 10.3879/j.issn.1000-0887.2014.11.005

Lagrange High Order Cell-Centered Conservative Scheme in Cylindrical Geometry

doi: 10.3879/j.issn.1000-0887.2014.11.005
Funds:  The National Natural Science Foundation of China(11172050; 11372051; 11001027)
  • Received Date: 2014-05-01
  • Rev Recd Date: 2014-09-11
  • Publish Date: 2014-11-18
  • A Lagrange high order cell-centered conservative scheme in cylindrical geometry was presented for gas dynamics. The high order volume weighting subcell force in cylindrical geometry and the high order area weighting subcell force in cylindrical geometry were introduced by means of the MUSCL type method to construct 2 Lagrange high order cell-centered conservative schemes in cylindrical geometry. The vertex velocities and the numerical fluxes through the cell interfaces were evaluated in a consistent manner due to an original solver located at the nodes. The volume weighting scheme satisfies the momentum conservation and energy conservation, but does not surely keep the 1D spherical symmetry. The area weighting scheme satisfies the energy conservation and preserves the 1D spherical symmetry. 2 numerical tests were conducted. The results demonstrate that the new scheme is a high order one with satisfactory validity and accuracy.
  • loading
  • [1]
    von Neumann J, Richtmyer R D. A method for the numerical calculations of hydrodynamical shocks[J].J Appl Phys,1950,21(3):232-238.
    [2]
    Wilkins M L.Calculation of Elastic Plastic Flow, Methods in Computationnal Physics[M]. Vol3. New York and London: Berni Alder Academic Press, 1964: 211-263.
    [3]
    Campbell J C, Shashov J C. A tensor artificial viscosity using a mimetic finite difference algorithm[J].Journal of Computational Physics,2001,172(2): 739-765.
    [4]
    Caramana E J, Burton D E, Shashov M J, Whalen P P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J].Journal of Computational Physics,1998,146(1): 227-262.
    [5]
    Campbell J C, Shashov M J. A compatible Lagrangian hydrodynamics algorithm for unstructured grids[J]. Selcuk J Appl Math,2003,4: 53-70.
    [6]
    Caramana E J, Shashkov M J. Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures[J].Journal of Computational Physics,1998,142(2): 521-561.
    [7]
    Noh W F. Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux[J]. Journal of Computational Physics,1987,72(1): 78-120.
    [8]
    Caramana E J, Shashkov M J, Whalen P P. Formulations of artificial viscosity for multi-dimensional shock wave computations[J].Journal of Computational Physics,2009,144(1): 70-97.
    [9]
    Maire P H, Loubère R, Vachal P. Staggered Lagrangian discretization based on cell-centered Riemann solver and associated hydrodynamics scheme[J].Journal of Computational Physics,2011,10(4): 940-978.
    [10]
    Loubère R, Maire P H, Vachal P. A second order compatible staggered Lagrangian hydrodynamics scheme using cell-centered multi directional Riemann solver[J].Proc Comput Sci,2010,1(1): 1931-1939.
    [11]
    Morgan N R, Lipnikov K N, Burton D E, Kenamond M A. A Lagrangian staggered grid Godunov-like approach for hydrodynamics[J].Journal of Computational Physics,2014,259: 568-597.
    [12]
    葛全文. Lagrange非结构网格高阶交错型守恒气体动力学格式[J]. 应用数学和力学, 2014,35(1): 92-101.(GE Quan-wen. A Lagrangian high order staggered conservative gasdynamics scheme on unstructured meshes[J].Applied Mathematics and Mechanics,2014,35(1): 92-101.(in Chinese))
    [13]
    Dukowicz J K, Meltz B. Vorticity errors in multidimensional Lagrangian codes[J].Journal of Computational Physics,1992,99(1): 115-134.
    [14]
    Després B, Mazeran C. Lagrangian gas dynamics in two dimensions and Lagrangian systems[J].Archive for Rational Mechanics and Analysis,2005,178(3): 327-372.
    [15]
    Carré G, Delpino S, Després B, Labourasse E. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[J].Journal of Computational Physics,2009,228(14): 5160-5183.
    [16]
    Maire P H, Abgrall R, Breil J, Ovadia J. A cell-centered Lagrangian scheme for two-dimensional compressible low problems[J].SIAM Journal on Scientific Computing,2007,29(4): 1781-1824.
    [17]
    Shen Z J ,Yuan G W, Yue J Y, Liu X Z. A cell-centered Lagrangian scheme in two-dimensional cylindrical geometry[J].Science in China, Series A: Mathematics,2008,51(8): 1479-1494.
    [18]
    葛全文. Lagrange中心型守恒格式[J]. 应用数学和力学, 2012,33(10): 1239-1256.(GE Quan-wen. A Lagrangian cell-centered conservative scheme[J].Applied Mathematics and Mechanics,2012,33(10): 1239-1256.
    [19]
    Maire P H, Breil J. A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems[J].International Journal for Numerical Methods in Fluids,2008,56(8): 1417-1423.
    [20]
    GE Quan-wen. High-order Lagrangian cell-centered conservative scheme on unstructured meshes[J].Applied Mathematics and Mechanics(English Edition),2014,35(9): 1203-1222.
    [21]
    Maire P H. A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry[J].Journal of Computational Physics,2009,228(18): 6882-6915.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1112) PDF downloads(673) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return