Citation: | XU Xiao-ming, ZHONG Wan-xie. Symplectic Integration for Multibody Dynamics Based on Quaternion Parameters[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1071-1080. doi: 10.3879/j.issn.1000-0887.2014.10.001 |
[1] |
程国采. 四元数法及其应用[M]. 长沙: 国防科技大学出版社, 1991.(CHENG Guo-cai.The Method of Quaternion and Its Application [M]. Changsha: National University of Defence Technology Press, 1991.(in Chinese))
|
[2] |
张树侠, 孙静. 捷联式惯性导航系统[M]. 北京: 国防工业出版社, 1992.(ZHANG Shu-xia, SUN Jing.Strap-Down Inertial Navigation System [M]. Beijing: National Defence Industry Press, 1992.(in Chinese))
|
[3] |
Wendlandt J M, Marsden J E. Mechanical integrators derived from a discrete variational principle[J].Physica D: Nonlinear Phenomena,1997,106(3): 223-246.
|
[4] |
Betsch P, Siebert R. Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration[J].International Journal for Numerical Methods in Engineering,2009,79(4): 444-473.
|
[5] |
Nielsen M B, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints[J].International Journal for Numerical Methods in Engineering,2012,〖STHZ〗 92(8): 734-752.
|
[6] |
徐小明, 钟万勰. 刚体动力学的四元数表示及保辛积分[J]. 应用数学和力学, 2014,〖STHZ〗35(1): 1-11.(XU Xiao-ming, ZHONG Wan-xie. Symplectic integration of rigid body motion by quaternion parameters[J].Applied Mathematics and Mechanics,2014,35(1): 1-11.(in Chinese))
|
[7] |
钟万勰, 高强. 约束动力系统的分析结构力学积分[J]. 动力学与控制学报, 2006,〖STHZ〗4(3): 193-200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structrural mechanics[J].Jounal of Dynamics and Control,2006,4(3): 193-200.(in Chinese))
|
[8] |
钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wan-xie.Symplectic Method in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
|
[9] |
Goldstein H, Poole C, Safko J.Classical Mechanics [M]. 3rd ed. Boston: Addison Wesley, 2002.
|