YANG Xi-mei, LIU Hong-wei, ZHANG Yin-kui. An Interior-Point Method With a New Iterative Scheme[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1063-1070. doi: 10.3879/j.issn.1000-0887.2014.09.012
Citation: YANG Xi-mei, LIU Hong-wei, ZHANG Yin-kui. An Interior-Point Method With a New Iterative Scheme[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1063-1070. doi: 10.3879/j.issn.1000-0887.2014.09.012

An Interior-Point Method With a New Iterative Scheme

doi: 10.3879/j.issn.1000-0887.2014.09.012
Funds:  The National Natural Science Foundation of China(61179040; 61303030)
  • Received Date: 2013-12-24
  • Publish Date: 2014-09-15
  • A 2nd-order Mehrotra-type predictor-corrector interior-point method was proposed for linear programming, in which the predictor direction and corrector direction were computed with the Newton method and the search direction was obtained through a new form of combination of the predictor direction and corrector direction. At each step of the iteration, the step size parameter was calculated with the iteration restricted to a wide neighborhood of the central path. Analysis indicates the proposed algorithm converges to the optimal solution after finite times of iteration and has the polynomial iteration complexity O(√nL), which is the best complexity result for the current interior-point methods. Numerical experiment proves the high efficiency of the proposed algorithm.
  • loading
  • [1]
    Karmarkar N. A new polynomial-time algorithm for linear programming[J].Combinatorica,1984,4(4):302-311.
    [2]
    Wright S J.Primal-Dual Interior-Point Methods[M]. Pliladelphia: SIAM, 1997.
    [3]
    Peng J, Roos C, Terlaky T.Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms[M]. Princeton: Princeton University Press, 2002.
    [4]
    Bai Y, Ghami M, Roos C. A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization[J].SIAM J Optim,2004,15(1): 101-128.
    [5]
    Methrostra S. On the implementation of a primal dual interior point method[J].SIAM J Optim,1992,2(4): 575-601.
    [6]
    Salahi M, Mahdavi-Amiri N. Polynomial time second order Mehrotra-type predictor-corrector algorithms[J].Appl Math Comput,2006,183(1): 646-658.
    [7]
    Liu C, Liu H, Liu X. Polynomial convergence of second-order Mehrotra-type predictor-corrector algorithms over symmetric cones[J].J Optim Theory Appl,2012,154(3): 949-965.
    [8]
    Zhang J, Zhang K. Polynomial complexity of an interior point algorithm with a second order corrector step for symmetric cone programming[J].Math Meth Oper Res,2011,73(1): 75-90.
    [9]
    Zhang M. A second order Mehrotra-type predictor-corrector algorithm for semidefinite optimization[J].J Syst Sci Complex,2012,25(6): 1108-1121.
    [10]
    Liu C, Liu H. A new second-order corrector interior-point algorithm for semidefinite programming[J].Math Meth Oper Res,2012,75(2): 165-183.
    [11]
    Liu H, Liu C, Yang X. New complexity analysis of a Mehrotra-type predictor-corrector algorithm for semidefinite programming[J].Optim Method Softw,2013,28(6): 1179-1194.
    [12]
    Yang X, Liu H, Zhang Y. A second-order Mehrotra-type predictor-corrector algorithm with a new wide neighbourhood for semi-definite programming[J].Int J Comput Math,2014,91(5): 1082-1096.
    [13]
    Yang X, Liu H, Dong X. Polynomial convergence of Mehrotra-type prediction-corrector infeasible-IPM for symmetric optimization based on the commutative class directions[J].Applied Mathematics and Computation,2014,230: 616-628.
    [14]
    Ai W, Zhang S. AnO(nL)-iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP[J].SIAM J Optim,2005,16(2): 400-417.
    [15]
    Browne S, Dongarra J, Grosse E, Rowan T.The Netlib Mathematical Software Repository[M]. Corporation for National Research Initiatives, 1995.
    [16]
    Ai W. Neighborhood-following algorithms for linear programming[J].Science in China, Ser A: Mathematics,2004,47(6): 812-820.
    [17]
    Ye Y, Todd J, Mizuno S. AnO(√nL)-iteration homogeneous and self-dual linear programming algorithm[J].Math Oper Res,1994,19(2): 53-67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1009) PDF downloads(770) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return