XIONG Hui, YANG Guang. Dynamics of a Complex-Valued Heat Equation[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011
Citation: XIONG Hui, YANG Guang. Dynamics of a Complex-Valued Heat Equation[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011

Dynamics of a Complex-Valued Heat Equation

doi: 10.3879/j.issn.1000-0887.2014.09.011
Funds:  The National Natural Science Foundation of China(11271069)
  • Received Date: 2013-12-25
  • Rev Recd Date: 2014-01-13
  • Publish Date: 2014-09-15
  • The Cauchy problem for a parabolic system which was derived from a complexvalued heat equation with inverse nonlinearity was studied. Some criteria for the global existence and quenching of the solutions were provided. Through transformation of the invariant subset of the solution plane, it was proved that, for the initial values which are asymptotically constants, whether the solution quenches at spatial infinity or exists globally at any time, depends on the asymptotic limits of the initial values.
  • loading
  • [1]
    Kawarada H. On solutions of initial-boundary problem for ut=uxx+1/(1-u)[J].Publications of the Research Institute for Mathematical Sciences,1974,10(3): 729-736.
    [2]
    Filippas S, Guo J S. Quenching profiles for one-dimensional semilinear heat equations[J].Quarterly of Applied Mathematics,1993,51(4): 713-729.
    [3]
    Guo Z, Wei J. On the Cauchy problem for a reaction-diffusion equation with a singular nonlinearity[J].Journal of Differential Equations,2007,240(2): 279-323.
    [4]
    Ferreira R, de Pablo A, Quirós F, Rossi J D. Non-simultaneous quenching in a system of heat equations coupled at the boundary[J].Zeitschrift für Angewandte Mathematik und Physik ZAMP,2006,57(4): 586-594.
    [5]
    Zheng S, Wang W. Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system[J].Nonlinear Analysis: Theory, Methods & Applications,2008,69(7): 2274-2285.
    [6]
    Zhi Y, Mu C. Non-simultaneous quenching in a semilinear parabolic system with weak singularities of logarithmic type[J].Applied Mathematics and Computation,2008,196(1): 17-23.
    [7]
    Mu C, Zhou S, Liu D. Quenching for a reaction-diffusion system with logarithmic singularity[J].Nonlinear Analysis: Theory, Methods & Applications,2009,71(11): 5599-5605.
    [8]
    YAN Dong-mei, SUN Yu-xin, YANG Jia-ling. Analytical dynamic model of elastic-plastic pipe-on-pipe impact[J].Applied Mathematics and Mechanics(English Edition ), 2013,34(6): 731-746.
    [9]
    Giga Y, Seki Y, Umeda N. Mean curvature flow closes open ends of noncompact surfaces of rotation[J].Communications in Partial Differential Equations,2009,34(11): 1508-1529.
    [10]
    Giga Y, Seki Y, Umeda N. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow[J].Discrete and Continuous Dynamical Systems(DCDS-A ), 2011,29(4): 1463-1470.
    [11]
    Guo J S, Ninomiya H, Shimojo M, Yanagida E. Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity[J].Transactions of the American Mathematical Society,2013,365(5): 2447-2467.
    [12]
    Matano H, Merle F. Classification of type I and type II behaviors for a supercritical nonlinear heat equation[J]. Journal of Functional Analysis,2009,256(4): 992-1064.
    [13]
    Seki Y. On directional blow-up for quasilinear parabolic equations with fast diffusion[J].Journal of Mathematical Analysis and Applications,2008,338(1): 572-587.
    [14]
    Shimojo M, Umeda N. Blow-up at space infinity for solutions of cooperative reaction-diffusion systems[J].Funkcialaj Ekvacioj,2011,54(2): 315-334.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (953) PDF downloads(819) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return