SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a Class of Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1046-1054. doi: 10.3879/j.issn.1000-0887.2014.09.010
Citation: SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a Class of Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1046-1054. doi: 10.3879/j.issn.1000-0887.2014.09.010

Solutions to a Class of Nonlinear Strong-Damp Disturbed Evolution Equations

doi: 10.3879/j.issn.1000-0887.2014.09.010
Funds:  The National Natural Science Foundation of China(11202106)
  • Received Date: 2014-03-07
  • Rev Recd Date: 2014-06-20
  • Publish Date: 2014-09-15
  • Widely emerging in the fields of mathematics and mechanics, a class of 3rd-order nonlinear strong-damp disturbed partial differential evolution equations were studied. Firstly, a functional homotopic mapping was constructed to express the solution to the evolution equation in a form of power series with artificial parameters, which was substituted into the homotopic mapping to build a method of successive iteration for the solution to the nonlinear disturbed equation. Then the corresponding non-disturbed strong-damp evolution equation was analyzed with exact solution based on the theory of Fourier transform. Secondly, the found exact solution was used as the initial function of the homotopic mapping iteration, and the iteration expansion of the nonlinear disturbed equation was applied to solve the related equations with the Fourier transform method. Finally, both the exact and arbitrary-order approximate analytic solutions to the nonlinear strong-damp disturbed evolution equation were obtained. The proposed homotopic mapping method is proved to have the advantages of convenience and accuracy.
  • loading
  • [1]
    Parkes E J. Some periodic and solitary travelling-wave solutions of the short-pulse equation[J].Chaos Solitons & Fractals, 2008,38(1): 154-159.
    [2]
    Sirendaoreji, SUN Jiong. Auxiliary equation method for solving nonlinear partial differential equations[J].Physics Letters A,2003,309(5/6): 387-396.
    [3]
    McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean[J].Nature,2002,415: 603-608.
    [4]
    Gu D, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J].Science,1997,275(5301): 805-807.
    [5]
    潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论[J]. 物理学报, 2005,54(1):1-5.(PAN Liu-xian, ZUO Wei-ming, YAN Jia-ren. The theory of the perturbation for Landau-Ginzburg-Higgs equation[J].Acta Physica Sinica,2005,54(1): 1-5.(in Chinese))
    [6]
    吕大昭. 非线性发展方程的丰富的Jacobi椭圆函数解[J]. 物理学报, 2005,54(10): 4501-4505.(Lü Da-zhao. Abundant Jacobi elliptic function solutions of nonlinear evolution equations[J].Acta Physica Sinica,2005,54(10): 4501-4505.(in Chinese))
    [7]
    WU Jian-ping. Bilinear B-cklund transformation for a variable-coefficient Kadomtsev-Petviashvili equation[J].Chinese Physics Letters,2011,28(6):060207. doi: 10.1088/0256-307X/28/6/060207.
    [8]
    吕大昭, 崔艳英, 刘长河, 张艳. mKdV-sine-Gordon方程丰富的相互作用[J]. 物理学报, 2010,59(10): 6793-6798.(Lü Da-zhao, CUI Yan-ying, LIU Chang-he, ZHANG Yan. Abundant interaction solutions of the mKdV-sine-Gordon equation [J].Acta Physica Sinica,2010, 59(10): 6793-6798.(in Chinese))
    [9]
    ZUO Jin-ming, ZHANG Yao-ming. The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq Burgers equation[J].Chinese Physics B,2011,20(1):010205. doi: 10.1088/1674-1056/20/1/010205.
    [10]
    庞晶, 靳玲花, 赵强. 变系数非线性发展方程的 G′/G 的展开解[J]. 物理学报, 2012,61(14): 140201.(PANG Jing, JIN Ling-hua, ZHAO Qiang. Nonlinear evolution equation with variable coefficientG′/Gexpansion solution[J].Acta Physica Sinica,2012, 61(14): 140201.(in Chinese))
    [11]
    XIN Xiang-peng, LIU Xi-qiang, ZHANG Lin-lin. Symmetry reduction, exact solutions and conservation laws of the modified Kadomtzev-Patvishvili-II equation[J].Chinese Physics Letters,2011, 28(2):020201. doi: 10.1088/0256-307X/28/2/020201.
    [12]
    李宁, 刘希强. Broer-Kau-Kupershmidt方程组的对称、约化和精确解[J]. 物理学报, 2013,62(16): 160203.(LI Ning, LIU Xi-qiang. Symmetries, reductions and exact solutions of Broer-Kau-Kupershmidt system[J].Acta Physica Sinica,2013, 62(16): 160203.(in Chinese))
    [13]
    石兰芳, 莫嘉琪. 用广义变分迭代理论求一类相对转动动力学方程的解[J]. 物理学报, 2013,62(4): 040203.(SHI Lan-fang, MO Jia-qi. Solution of a class of rotational relativistic rotation dynamic equation using the generalized variational iteration theory[J].Acta Physica Sinica,2013,62(4): 040203.(in Chinese))
    [14]
    石兰芳, 林万涛, 林一骅, 莫嘉琪. 一类非线性方程类孤波的近似解法[J]. 物理学报, 2013,62(1): 010201.(SHI Lan-fang, LIN Wan-tao, LIN Yi-hua, MO Jia-qi. Approximate method of solving solitary-like wave for a class of nonlinear equation[J].Acta Physica Sinica,2013, 62(1): 010201.(in Chinese))
    [15]
    韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解[J]. 物理学报, 2013,62(11): 110202.(HAN Xiang-lin, ZHAO Zhen-jiang, CHENG Rong-jun, MO Jia-qi. Solution of the transfer models of femtosecond pulse laser for nano metal film[J].Acta Physica Sinica,2013, 62(11): 110202.(in Chinese))
    [16]
    XIE Feng, LIN Wan-tao, LIN Yi-hua, MO Jia-qi. Disturbed solution of the El Nio-southern oscillation sea-air delayed oscillator[J].Chinese Physics B,2011,20(1): 010208. doi: 10.1088/1674-1056/20/1/010208.
    [17]
    莫嘉琪, 林万涛, 杜增吉. 具双参数非线性高阶椭圆型方程的奇摄动解[J]. 系统科学与数学, 2013,33(2): 217-221.(MO Jia-qi, LIN Wan-tao, DU Zeng-ji. A singularly perturbed solution for nonlinear higher order elliptic equations with two parameters[J].Journal of Systems Science and Mathematical Sciences,2013,33(2): 217-221.(in Chinese))
    [18]
    莫嘉琪, 林万涛. 一类奇摄动燃烧ROBIN问题解的渐近性态[J]. 系统科学与数学, 2012,32(11): 1413-1418.(MO Jia-qi, LIN Wan-tao. The asymptotic behavior for a class of burning singularly perturbed Robin problem[J].Journal of Systems Science and Mathematical Sciences,2012,32(11): 1413-1418.(in Chinese))
    [19]
    MO Jia-qi. Solution of travelling wave for nonlinear disturbed long-wave system[J].Communications in Theoretical Physics,2011,55(3): 387-390.
    [20]
    Liao S J.Beyond Perturbation: Introduction to the Homotopy Analysis Method [M]. New York: CRC Press, 2004.
    [21]
    何吉欢. 工程和科学计算中的近似非线性分析方法[M]. 郑州: 河南科学技术出版社, 2002.(HE Ji-huan.Approximate Nonlinear Analytical Methods in Engineering and Sciences [M]. Zhengzhou: Henan Science and Technology Press, 2002.(in Chinese))
    [22]
    de Jager E M, JIANG Fu-ru.The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing, 1996.
    [23]
    Barbu L, Morosanu G.Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhuserm Verlag AG, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1161) PDF downloads(865) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return