LI Yuan, CHEN Wen, PANG Guo-fei. Application of Fractional Calculus to Simulate the Isolation Effects of Discontinuous Pile Barriers on Viscoelastic SH Waves[J]. Applied Mathematics and Mechanics, 2014, 35(9): 949-958. doi: 10.3879/j.issn.1000-0887.2014.09.001
Citation: LI Yuan, CHEN Wen, PANG Guo-fei. Application of Fractional Calculus to Simulate the Isolation Effects of Discontinuous Pile Barriers on Viscoelastic SH Waves[J]. Applied Mathematics and Mechanics, 2014, 35(9): 949-958. doi: 10.3879/j.issn.1000-0887.2014.09.001

Application of Fractional Calculus to Simulate the Isolation Effects of Discontinuous Pile Barriers on Viscoelastic SH Waves

doi: 10.3879/j.issn.1000-0887.2014.09.001
Funds:  The National Basic Research Program of China (973 Program)(2010CB832702); The National Science Fund for Distinguished Young Scholars of China(11125208)
  • Received Date: 2014-04-10
  • Rev Recd Date: 2014-07-08
  • Publish Date: 2014-09-15
  • Based on the 3-dimensional (3D) fractional order constitutive equation of viscoelastic body waves, the frequency dispersion characteristics of viscoelastic P- and S-waves were analyzed. Also, the isolation effects of the discontinuous rigid pile barrier and the elastic pile barrier in soft clay on viscoelastic SH waves were comparatively studied. With the finite difference method (FDM), an array of vibration amplitude reduction factors for different pile spacing-to-diameter ratios, different fractional orders and different frequencies of incident waves were obtained, and the isolation effect of the elastic pile isolation system in comparison with the rigid was analyzed. The results exhibit that the smaller pile spacing-to-diameter ratio is, or the larger the fractional order is, the better isolation effect of the rigid barrier will be. In contrast, the elastic barrier has better isolation effect in some special target area when the fractional order becomes smaller.
  • loading
  • [1]
    Twersky V. Multiple scattering of radiation by an arbitrary configuration of parallel cylinders[J].The Journal of the Acoustical Society of America,1952,24(1): 42-46.
    [2]
    高广运, 李志毅, 邱畅. 弹性半空间不规则异质体引起的瑞利波散射[J]. 岩土工程学报, 2005,27(4): 378-382.(GAO Guang-yun, LI Zhi-yi, QIU Chang. Scattering of Rayleigh wave from irregular obstacles in elastic half-space[J].Chinese Journal of Geotechnical Engineering,2005,27(4): 378-382.(in Chinese))
    [3]
    Avilés J, Sánchez-Sesma F J. Foundation isolation from vibrations using piles as barriers[J].Journal of Engineering Mechanics,1988,114(11): 1854-1870.
    [4]
    Assimaki D, Kallivokas L F, Kang J W, Li W, Kucukcoban S. Time-domain forward and inverse modeling of lossy soils with frequency-independentQ for near-surface applications[J].Soil Dynamics and Earthquake Engineering,2012,43: 139-159.
    [5]
    Day S M, Minster J B. Numerical simulation of attenuated wavefields using a Padé approximant method[J].Geophysical Journal International,1984,78(1): 105-118.
    [6]
    Emmerich H. PSV-wave propagation in a medium with local heterogeneities: a hybrid formulation and its application[J]. Geophysical Journal International,1992,109(1): 54-64.
    [7]
    Carcione J M, Kosloff D, Kosloff R. Wave propagation simulation in a linear viscoacoustic medium[J].Geophysical Journal International,1988,93(2): 393-401.
    [8]
    Carcione J M, Cavallini F. A rheological model for anelastic anisotropic media with applications to seismic wave propagation[J].Geophysical Journal International,1994,119(1): 338-348.
    [9]
    Carcione J M. Constitutive model and wave equations for linear, viscoelastic, anisotropic media[J].Geophysics,1995,60(2): 537-548.
    [10]
    Szabo T L, Wu J. A model for longitudinal and shear wave propagation in viscoelastic media[J].The Journal of the Acoustical Society of America,2000,107(5): 2437-2446.
    [11]
    Hestholm S. Composite memory variable velocity-stress viscoelastic modelling[J].Geophysical Journal International,2002,148(1): 153-162.
    [12]
    Borcherdt R D. Reflection—refraction of general P- and type-I S-waves in elastic and anelastic solids[J].Geophysical Journal of the Royal Astronomical Society,1982,70(3): 621-638.
    [13]
    Moczo P, Kristek J. On the rheological models used for time-domain methods of seismic wave propagation[J].Geophysical Research Letters,2005,32(1). doi: 10.1029/2004GL021598.
    [14]
    Carcione J M, Cavallini F, Mainardi F, Hanyga A. Time-domain modeling of constant-Q seismic waves using fractional derivatives[J].Pure and Applied Geophysics,2002,159(7/8): 1719-1736.
    [15]
    Carcione J M. Theory and modeling of constant-Q P- and S-waves using fractional time derivatives[J].Geophysics,2009,74(1). doi: 10.1190/1.3008548.
    [16]
    Grasso E,Chaillat S, Bonnet M, Semblat J-F. Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics[J].Engineering Analysis With Boundary Elements,2012,〖STHZ〗 36(5): 744-758.
    [17]
    Mainardi F.Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models [M]. London: Imperial College Press, 2010.
    [18]
    殷德顺, 任俊娟, 和成亮, 陈文. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007,26(9): 1899-1903.(YIN De-shun, REN Jun-juan, HE Cheng-liang, CHEN Wen. A new rheological model element for geomaterials[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(9): 1899-1903.(in Chinese))
    [19]
    Makris N. Three-dimensional constitutive viscoelastic laws with fractional order time derivatives[J].Journal of Rheology,1997,41(5): 1007-1020.
    [20]
    Schmidt A, Gaul L. Finite element formulation of viscoelastic constitutive equations using fractional time derivatives[J].Nonlinear Dynamics,2002,29(1/4): 37-55.
    [21]
    Caputo M, Carcione J M. Wave simulation in dissipative media described by distributed-order fractional time derivatives[J].Journal of Vibration and Control,2011,17(8): 1121-1130.
    [22]
    Zhu T, Carcione J M, Harris J M. Approximating constant-Q seismic propagation in the time domain[J].Geophysical Prospecting,2013,61(5): 931-940.
    [23]
    Langlands T, Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation[J].Journal of Computational Physics,2005,205(2): 719-736.
    [24]
    汤斌. 软土固结蠕变耦合特性的试验研究与理论分析[D]. 博士学位论文. 武汉: 武汉大学, 2004.(TANG Bin. Study on tests and analysis on theory of coupled behaviors of consolidation and creep of soft clay[D]. PhD Thesis. Wuhan: Wuhan University, 2004.(in Chinese))
    [25]
    Woods R D. Screening of surface waves in soils[J].Journal of the Soil Mechanics and Foundations Division,1968,94(4): 951-979.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1112) PDF downloads(1212) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return