Citation: | JING Ke, LIU Ye-zheng, KANG Ning. High Order Derivative Rational Interpolation Algorithm With Heredity[J]. Applied Mathematics and Mechanics, 2014, 35(8): 913-919. doi: 10.3879/j.issn.1000-0887.2014.08.009 |
[1] |
Salzer H E. Note on osculatory rational interpolation[J].Mathematics of Computation,1962,16(80): 486-491.
|
[2] |
Wuytack L. On the osculatory rational interpolation problem[J].Mathematics of Computation,1975,29(131): 837-843.
|
[3] |
朱晓临. (向量)有理函数插值的研究及其应用[D]. 博士学位论文. 合肥: 中国科学技术大学, 2002: 32-43.(ZHU Xiao-lin. Research on (vector) rational function interpolation and its application[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2002: 32-43.(in Chinese))
|
[4] |
王仁宏, 朱功勤. 有理函数逼近及其应用[M]. 北京: 科学出版社, 2004: 117-183.(WANG Ren-hong, ZHU Gong-qin.Rational Function Approximation and Its Application [M]. Beijing: Science Press, 2004: 117-183.(in Chinese))
|
[5] |
朱功勤, 马锦锦. 构造切触有理插值的一种方法[J]. 合肥工业大学学报(自然科学版), 2006,29(10): 1320-1326.(ZHU Gong-qin, MA Jin-jin. A way of constructing osculatory rational interpolation[J].Journal of Hefei University of Technology(Natural Sciences),2006,29(10): 1320-1326.(in Chinese))
|
[6] |
朱功勤, 何天晓. 具有重节点的分段Padé逼近的一个算法[J]. 计算数学, 1981,3(2): 179-182.(ZHU Gong-qin, HE Tian-xiao. A method of calculation about theN -point sectional Padé approximant[J].Mathematica Numerica Sinica,1981,3(2): 179-182.(in Chinese))
|
[7] |
朱功勤, 黄有群. 插值(切触)分式表的构造[J]. 计算数学, 1983,5(3): 310-317. (ZHU Gong-qin, HUANG You-qun. The construction of the table of interpolating (osculatory) rationals[J].Mathematica Numerica Sinica,1983,5(3): 310-317.(in Chinese))
|
[8] |
苏家铎, 黄有度. 切触有理插值的一个新算法[J]. 高等学校计算数学学报, 1987,9(2): 170-176.(SU Jia-duo, HUANG You-du. A new algorithm of osculatory rational interpolation[J].Numerical Mathematics: A Journal of Chinese Universities,1987,9(2): 170-176.(in Chinese))
|
[9] |
荆科, 康宁, 姚云飞. 一种切触有理插值的构造方法[J]. 中国科学技术大学学报, 2013,43(6): 477-479.(JING Ke, KANG Ning, YAO Yun-fei. A new method of constructing osculatory rational interpolation function [J].Journal of University of Science and Technology of China,2013,43(6): 477-479.(in Chinese))
|
[10] |
朱功勤, 顾传青. 向量的Salzer定理[J]. 数学研究与评论, 1990,10(4): 516.(ZHU Gong-qin, GU Chuan-qing. Vector Salzer theorem[J].Journal of Mathematical Research and Exposition,1990,10(4): 516.(in Chinese))
|
[11] |
陶有田, 朱晓临, 周金明, 徐鑫. 向量值切触有理插值存在性的一种判别方法[J]. 合肥工业大学学报(自然科学版), 2007,30(1): 117-120.(TAO You-tian, ZHU Xiao-lin, ZHOU Jin-ming, XU Xin. A decision method for existence of vector-valued osculatory rational interpolants[J].Journal of Hefei University of Technology (Natural Sciences),2007,30(1): 117-120.(in Chinese))
|
[12] |
Sidi A. A new approach to vector-valued rational interpolation[J].Journal of Approximation Theory,2004,130(2): 179-189.
|
[13] |
Sidi A. Algebraic properties of some new vector-valued rational interpolants[J].Journal of Approximation Theory,2006,141(2): 142-161.
|
[14] |
盛中平, 林正华. 广义 Vandermonde 行列式及其应用[J]. 高等学校计算数学学报, 1996,18(3): 217-225.(SHENG Zhong-ping, LIN Zheng-hua.The generalized Vandermonde determinant and its applications [J].Numerical Mathematics: A Journal of Chinese Universitie s, 1996,18(3): 217-225.(in Chinese))
|