JING Ke, LIU Ye-zheng, KANG Ning. High Order Derivative Rational Interpolation Algorithm With Heredity[J]. Applied Mathematics and Mechanics, 2014, 35(8): 913-919. doi: 10.3879/j.issn.1000-0887.2014.08.009
Citation: JING Ke, LIU Ye-zheng, KANG Ning. High Order Derivative Rational Interpolation Algorithm With Heredity[J]. Applied Mathematics and Mechanics, 2014, 35(8): 913-919. doi: 10.3879/j.issn.1000-0887.2014.08.009

High Order Derivative Rational Interpolation Algorithm With Heredity

doi: 10.3879/j.issn.1000-0887.2014.08.009
Funds:  The National Basic Research Program of China (973 Program)(2013CB329603)
  • Received Date: 2013-12-06
  • Rev Recd Date: 2014-06-09
  • Publish Date: 2014-08-15
  • Osculatory rational interpolation was an important theme of function approximation, meanwhile, reducing the degree and solving the existence of the osculatory rational interpolation function made a crucial problem for rational interpolation. The previous algorithms of osculatory rational interpolation functions mostly depended on the continued fraction with conditional feasibility and high computation complexity. Based on heredity of the Newton interpolation and the method of piecewise combination, an osculatory rational interpolation function without real poles was constructed to meet the condition of high order derivative interpolation, and was in turn extended to the vector-valued cases. It not only solved the existence problem for the osculatory rational interpolation function, but reduced the degree of the rational function. Furthermore, the error estimates of the new algorithm was given. Results of the numerical examples illustrate the new algorithm’s heredity, low computation complexity and easy programmability.
  • loading
  • [1]
    Salzer H E. Note on osculatory rational interpolation[J].Mathematics of Computation,1962,16(80): 486-491.
    [2]
    Wuytack L. On the osculatory rational interpolation problem[J].Mathematics of Computation,1975,29(131): 837-843.
    [3]
    朱晓临. (向量)有理函数插值的研究及其应用[D]. 博士学位论文. 合肥: 中国科学技术大学, 2002: 32-43.(ZHU Xiao-lin. Research on (vector) rational function interpolation and its application[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2002: 32-43.(in Chinese))
    [4]
    王仁宏, 朱功勤. 有理函数逼近及其应用[M]. 北京: 科学出版社, 2004: 117-183.(WANG Ren-hong, ZHU Gong-qin.Rational Function Approximation and Its Application [M]. Beijing: Science Press, 2004: 117-183.(in Chinese))
    [5]
    朱功勤, 马锦锦. 构造切触有理插值的一种方法[J]. 合肥工业大学学报(自然科学版), 2006,29(10): 1320-1326.(ZHU Gong-qin, MA Jin-jin. A way of constructing osculatory rational interpolation[J].Journal of Hefei University of Technology(Natural Sciences),2006,29(10): 1320-1326.(in Chinese))
    [6]
    朱功勤, 何天晓. 具有重节点的分段Padé逼近的一个算法[J]. 计算数学, 1981,3(2): 179-182.(ZHU Gong-qin, HE Tian-xiao. A method of calculation about theN -point sectional Padé approximant[J].Mathematica Numerica Sinica,1981,3(2): 179-182.(in Chinese))
    [7]
    朱功勤, 黄有群. 插值(切触)分式表的构造[J]. 计算数学, 1983,5(3): 310-317. (ZHU Gong-qin, HUANG You-qun. The construction of the table of interpolating (osculatory) rationals[J].Mathematica Numerica Sinica,1983,5(3): 310-317.(in Chinese))
    [8]
    苏家铎, 黄有度. 切触有理插值的一个新算法[J]. 高等学校计算数学学报, 1987,9(2): 170-176.(SU Jia-duo, HUANG You-du. A new algorithm of osculatory rational interpolation[J].Numerical Mathematics: A Journal of Chinese Universities,1987,9(2): 170-176.(in Chinese))
    [9]
    荆科, 康宁, 姚云飞. 一种切触有理插值的构造方法[J]. 中国科学技术大学学报, 2013,43(6): 477-479.(JING Ke, KANG Ning, YAO Yun-fei. A new method of constructing osculatory rational interpolation function [J].Journal of University of Science and Technology of China,2013,43(6): 477-479.(in Chinese))
    [10]
    朱功勤, 顾传青. 向量的Salzer定理[J]. 数学研究与评论, 1990,10(4): 516.(ZHU Gong-qin, GU Chuan-qing. Vector Salzer theorem[J].Journal of Mathematical Research and Exposition,1990,10(4): 516.(in Chinese))
    [11]
    陶有田, 朱晓临, 周金明, 徐鑫. 向量值切触有理插值存在性的一种判别方法[J]. 合肥工业大学学报(自然科学版), 2007,30(1): 117-120.(TAO You-tian, ZHU Xiao-lin, ZHOU Jin-ming, XU Xin. A decision method for existence of vector-valued osculatory rational interpolants[J].Journal of Hefei University of Technology (Natural Sciences),2007,30(1): 117-120.(in Chinese))
    [12]
    Sidi A. A new approach to vector-valued rational interpolation[J].Journal of Approximation Theory,2004,130(2): 179-189.
    [13]
    Sidi A. Algebraic properties of some new vector-valued rational interpolants[J].Journal of Approximation Theory,2006,141(2): 142-161.
    [14]
    盛中平, 林正华. 广义 Vandermonde 行列式及其应用[J]. 高等学校计算数学学报, 1996,18(3): 217-225.(SHENG Zhong-ping, LIN Zheng-hua.The generalized Vandermonde determinant and its applications [J].Numerical Mathematics: A Journal of Chinese Universitie s, 1996,18(3): 217-225.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1226) PDF downloads(955) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return