Citation: | LI Te, LIU Shao-bao, LI Meng-meng, WU Ying, LI Yue-ming. Influences of the Cochlear Structure on the Dispersion of Low-Frequency Signals[J]. Applied Mathematics and Mechanics, 2014, 35(8): 893-902. doi: 10.3879/j.issn.1000-0887.2014.08.007 |
[1] |
von Békésy G. Experiments in Hearing [M]. Wever E G transl. New York, Toronto, London: McGraw-Hill Bool Company, INC, 1960.
|
[2] |
Leveque R J, Peskin C S, Lax P D. Solution of a two-dimensional cochlea model with fluid viscosity[J]. SIAM Journal on Applied Mathematics,1988,48(1): 191-213.
|
[3] |
Allen J. Two-dimensional cochlear fluid model: new results[J]. The Journal of the Acoustical Society of America,1977,61(1): 110-119.
|
[4] |
Givelberg E, Bunn J. A comprehensive three-dimensional model of the cochlea[J]. Journal of Computational Physics,2003,191(2): 377-391.
|
[5] |
刘迎曦, 李生, 孙秀珍. 人耳传声数值模型[J]. 力学学报, 2008,40(1): 107-113.(LIU Ying-xi, LI Sheng, SUN Xiu-zhen. Numerical model of human ear for sound transmission[J].Chinese Journal of Theoretical and Applied Mechanics,2008,40(1): 107-113.(in Chinese))
|
[6] |
王学林, 周健军, 凌玲, 胡于进. 含主动耳蜗的人耳传声有限元模拟[J]. 振动与冲击, 2012,31(21): 41-45.(WANG Xue-lin, ZHOU Jian-jun, LING Ling, HU Yu-jin. FE simulation of sound transmission in human ear with an active cochlea model[J]. Journal of Vibration and Shock,2012,31(21): 41-45.(in Chinese))
|
[7] |
王学林, 胡于进. 蜗窗激励评价的有限元计算模型研究[J]. 力学学报, 2012,44(3): 622-630.(WANG Xue-lin, HU Yu-jin. Numerical study on the effect of the floating mass transducer on middle ear sound transmission[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(3): 622-630.(in Chinese))
|
[8] |
Manoussaki D, Dimitriadis E, Chadwick R. Cochlea’s graded curvature effect on low frequency waves[J]. Physical Review Letters,2006,96(8): 88701.
|
[9] |
Manoussaki D, Chadwick R S, Dimitriadis E. The influence of cochlear shape on low-frequency hearing[J]. Proceedings of the National Academy of Sciences,2008,105(16): 6162-6166.
|
[10] |
Babbs C F. Quantitative reappraisal of the Helmholtz-Guyton resonance theory of frequency tuning in the cochlea[J]. Journal of Biophysics,2011,54(6): 1-16.
|
[11] |
Kim N, Yoon Yongjin, Steele C, Puria S. Cochlear anatomy using micro computed tomography (μCT) imaging in Biomedical Optics (BiOS)[J]. Proc SPIE 6842, Photonic Therapeutics and Diagnostics IV,2008,6842: 1A-1.
|
[12] |
Naidu R C, Mountain D C. Basilar membrane tension calculations for the gerbil cochlea[J]. The Journal of the Acoustical Society of America,2007,121(2): 994-1002.
|
[13] |
Wada H, Sugawara M, Kobayashi T, Hozawa K, Takasaka T. Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system[J]. Hearing Research,1998,120(1): 1-6.
|
[14] |
Greenwood D D. A cochlear frequency-position function for several species—29 years later[J]. The Journal of the Acoustical Society of America,1990,87(6): 2592-2605.
|
[15] |
Manley G A, Narins P M, Fay R R. Experiments in comparative hearing: Georg von Békésy and beyond[J]. Hearing Research,2012,293(1): 44-50.
|