HAO Jia-qiong, LI Ming-cheng, DENG Zong-bai. Bending of Sandwich Plates With Hard Cores Under Transverse Loading Based on the HighOrder Deformation Theory[J]. Applied Mathematics and Mechanics, 2014, 35(8): 873-882. doi: 10.3879/j.issn.1000-0887.2014.08.005
Citation: HAO Jia-qiong, LI Ming-cheng, DENG Zong-bai. Bending of Sandwich Plates With Hard Cores Under Transverse Loading Based on the HighOrder Deformation Theory[J]. Applied Mathematics and Mechanics, 2014, 35(8): 873-882. doi: 10.3879/j.issn.1000-0887.2014.08.005

Bending of Sandwich Plates With Hard Cores Under Transverse Loading Based on the HighOrder Deformation Theory

doi: 10.3879/j.issn.1000-0887.2014.08.005
  • Received Date: 2013-12-03
  • Rev Recd Date: 2014-05-04
  • Publish Date: 2014-08-15
  • Based on the high-order deformation theory, the in-plane stiffness and bending stiffness of both surface layer and core layer of the sandwich plate were considered to derive the transverse shearing stiffnesses of all the layers. The transverse stress function was given according to the transverse strain distribution, and the differential equations for the sandwich plate were deduced with the generalized principle of virtual displacement. The bending deformation of simply supported rectangular sandwich plates with different core-to-surface thickness ratios were detailedly studied under transverse loading, and the calculation results were compared with those from the 1st-order deformation theory to give a bigger relative deformation difference at a smaller thickness ratio. The distribution of transverse strain along the thickness direction makes a half sine curve, and the center-plane normal line distortion culminates at the surface height.
  • loading
  • [1]
    Reissner E. Finite deflections of sandwich plates[J]. Journal of the Aeronautical Science,1948,15(7): 435-440.
    [2]
    Reissner E. Small bending and stretching of sandwich-type shells[R]. NACA/TN-975. Washington: NASA, 1950.
    [3]
    Hoff N J. Bending and buckling of rectangular sandwich plates[R]. NACA/TN-2225. Washington: NASA, 1950.
    [4]
    杜庆华. 三合板的一般弹性理论[J]. 物理学报, 1954,10(4): 395-412.(TU Ching-hua. General equations of sandwich plates under transverse loads and edgewise shears and compressions[J]. Acta Physica Sinica,1954,10(4): 395-412.(in Chinese))
    [5]
    胡海昌. 各向同性夹层板反对称小挠度的若干问题[J]. 力学学报, 1963,6(1): 53-59.(HU Hai-chang. On some problems of the antisymetrical small deflection of isotropic sandwich plates[J]. Acta Mechanica Sinica,1963,6(1): 53-59.(in Chinese))
    [6]
    周际平, 薛大为. 具有不等厚表层的硬夹心双曲夹层扁壳问题[J]. 北京工业学院学报, 1988,8(4):32-45.(ZHOU Ji-ping, XUE Da-wei. On the problems of a shallow double curved sandwich shell with hard core and face layers of unequal thickness[J]. Journal of Beijing Institute of Technology,1988,8(4):32-45.(in Chinese))
    [7]
    周际平. 考虑各层抗弯刚度和夹心横向弹性的夹层板问题[J]. 北京理工大学学报, 1993,13(1): 101-107.(ZHOU Ji-ping. Problems involving plates of sandwich construction when considering the bending rigidity of each layers and transverse elasticity of the core[J]. Journal of Beijing University of Technology,1993,13(1): 101-107.(in Chinese))
    [8]
    胡宁宁, 张永发. 变厚度智能硬夹心板振动分析[J]. 动力学与控制学报, 2003,1(1): 70-73.(HU Ning-ning, ZHANG Yong-fa.Vibration analysis of smart changed hard-sandwich plate[J].Journal of Dynamics and Control,2003,1(1): 70-73.(in Chinese))
    [9]
    马超, 邓宗白. 四边简支硬夹芯夹层板的弯曲问题研究[J]. 应用力学学报, 2013,2(30): 196-200.(MA Chao, DENG Zong-bai. Research on bending of simply supported rectangular sandwich plates with hardened cores[J]. Chinese Journal of Applied Mechanics,2013,2(30): 196-200.(in Chinese))
    [10]
    杨贺, 邓宗白. 硬夹心矩形夹层板的整体稳定性分析[J]. 固体力学学报, 2013,34(3): 251-258.(YANG He, DENG Zong-bai. The overall buckling analysis of rectangular sandwich plates with hard core[J]. Acta Mechanica Solida Sinica,2013,34(3): 251-258.(in Chinese))
    [11]
    Reddy J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics,1984,51(4): 745-752.
    [12]
    Reddy J N. A refined nonlinear theory of plates with transverse shear deformation[J]. International Journal of Solids and Structures,1984,20(9): 881-896.
    [13]
    Hassis H. A ‘warping’theory of plate deformation[J]. European Journal of Mechanics-A/Solids,1998,17(5): 843-853.
    [14]
    Hassis H. A “warping-Kirchhoff” and a “warping-Mindlin” theory of shell deformation[J]. Journal of Sound and Vibration,1999,225(4): 633-653.
    [15]
    Hassis H. A higher order theory for static-dynamic analysis of laminated plates using a warping model[J]. Journal of Sound and Vibration,2000,235(2): 247-260.
    [16]
    Ferreira A J M, Roque C M C, Jorge R M N, Kansa E J. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations[J]. Engineering Analysis With Boundary Elements,2005,29(12): 1104-1114.
    [17]
    Swaminathan K, Patil S S, Nataraja M S, Mahabaleswara K S. Bending of sandwich plates with anti-symmetric angle-ply face sheets-analytical evaluation of higher order refined computational models[J]. Composite Structures,2006,75(1): 114-120.
    [18]
    Aydogdu M. A new shear deformation theory for laminated composite plates[J]. Composite Structures,2009, 89(1): 94-101.
    [19]
    Berdichevsky V L. An asymptotic theory of sandwich plates[J]. International Journal of Engineering Science,2010,48(3): 383-404.
    [20]
    Ferreira A J M, Roque C M C, Neves A M A, Jorge R M N, Soares C M M, Reddy J N. Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory[J]. Thin-Walled Structures,2011,49(7): 804-811.
    [21]
    Kheirikhah M M, Khalili S M R, Malekzadeh F K. Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory[J]. European Journal of Mechanics-A/Solids,2012,31(1): 54-66.
    [22]
    Grover N, Maiti D K, Singh B N. A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates[J]. Composite Structures,2013,95: 667-675.
    [23]
    Sahoo R, Singh B N. A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates[J]. Composite Structures,2013,105: 385-397.
    [24]
    Tounsi A, Houari M S A, Benyoucef S, Bedia El A A. A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates[J].Aerospace Science and Technology,2013,24(1): 209-220.
    [25]
    Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells [M]. New York: McGraw-Hill, 1959.
    [26]
    尹思明, 阮圣磺. 变厚度矩形薄板的线性和非线性理论的弹性平衡问题的Navier解[J]. 应用数学和力学, 1985,6(6): 519-530.(YIN Si-ming, RUAN Sheng-huang. Navier solution for the elastic equilibrium problems of rectangular thin plates with variable thickness in linear and nonlinear theories[J]. Applied Mathematics and Mechanics,1985,6(6): 519-530.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1188) PDF downloads(743) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return