Citation: | GUO Feng, LI Deng-hui. Inverse Limit and Lauwerier Attractor(Ⅱ)[J]. Applied Mathematics and Mechanics, 2014, 35(7): 798-804. doi: 10.3879/j.issn.1000-0887.2014.07.009 |
[1] |
Ruelle D, Takens F. On the nature of turbulence[J]. Commun Math Phys,1971,20(3): 167-192.
|
[2] |
乐源, 谢建华. 一类双面碰撞振子的对称性尖点分岔与混沌[J]. 应用数学和力学, 2007,28(8): 991-998.(YUE Yuan, XIE Jian-hua. Symmetry, cusp bifurcation and chaos of an impact cscillator between two rigid sides[J]. Applied Mathematics and Mechanics,2007,28(8): 991-998.(in Chinese))
|
[3] |
Leine R I, Nijmeijer H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems [M]. Springer, 2004.
|
[4] |
LI Shi-hai. Dynamical properties of the shift maps on the inverse limit space[J]. Ergodic Theory and Dynamical Systems,1992,12(1): 95-108.
|
[5] |
Barge M, Martin J. Chaos, periodicity, and snake-like continua[J]. Trans Amer Math Soc,1985,289(1): 355-365.
|
[6] |
Williams R F. One-dimensional non-wandering sets[J]. Topologically,1967,6(4): 473-487.
|
[7] |
Williams R F. Expanding attractors[J]. Publications Mathématiques de l'Institut des Hautes tudes Scientifiques,1974,43(1): 169-203.
|
[8] |
Williams R F. The structure of attractors[C]//Actes du Congrès International des Mathematics,1970,2: 947-951.
|
[9] |
Williams R F. The structure of Lorenz attractors[J].Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques Turbulence Seminar,1979,50(1): 73-99.
|
[10] |
Guckenheimer J, Williams R F. Structure stability of Lorenz attractors[J]. Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques Turbulence Seminar,1979,50(1): 59-72.
|
[11] |
Lauwerier H A. The structure of a strange attractor[J]. Physica D: Nonlinear Phenomena,1986,21(1): 146-154.
|
[12] |
Liu Z R, Qin W X, Xie H M. The structure and dynamics of Lauwerier attractor[J]. Chinese Science Bulletin,1992,37(14): 1269-1278.
|
[13] |
郭峰, 李登辉, 谢建华. 反演极限与Lauwerier吸引子[J]. 应用数学和力学, 2014,35(2): 212-218.(GUO Feng, LI Deng-hui, XIE Jian-hua. Inverse limits and Lauwerier attractor [J]. Applied Mathematics and Mechanics,2014,35(2): 212-218.(in Chinese))
|
[14] |
Swiatek C. Hyperbolicity is dense in the real quadratic family[R]. Stony Brook Preprint, 1992.
|
[15] |
Holte S, Roe R. Inverse limits associated with the forced Van der Pol equation[J]. Journal of Dynamics and Differential Equations,1994,6(4): 601-612.
|
[16] |
Barge M, Holte S. Nearly one-dimensional Hénon attractors and inverse limits[J]. Nonlinearity,1995,8(1): 29-42.
|
[17] |
Maid R. Hyperbolicity, sinks and measure in one dimensional dynamics[J]. Communications in Mathematical Physics,1985,100(4): 495-524.
|
[18] |
Singer D. Stable orbits and bifurcation of maps of the interval[J]. SIAM Journal on Applied Mathematics,1978,35(2): 260-267.
|