Citation: | ZOU Li, WANG Zhen, ZONG Zhi, WANG Xi-jun, ZHANG Shuo. Analytical and Numerical Investigation of the Variable Coefficient Burgers Equation Under Cauchy Condition With the Exponential Homotopy Method[J]. Applied Mathematics and Mechanics, 2014, 35(7): 777-789. doi: 10.3879/j.issn.1000-0887.2014.07.007 |
[1] |
Sauchder P L.Nonlinear Diffusive Waves[M]. New York: Cambridge University Press, 1987.
|
[2] |
Scott J F. The long time asymptotics of solutions to the generalized Burgers equation[J].Proceedings of the Royal Society of London, Series A ,1981,373(1755): 443-456.
|
[3] |
Crighton D G, Scott J F. Asymptotic solution of model equations in nonlinear acoustic[J].Phil Trans R Soc Lond, Series A,1979,292(1389): 101-134.
|
[4] |
ZHANG Hui. Global existence and asymptotic behavior of the solution of a generalized Burger’s equation with viscocity[J].Computers and Mathematics With Applications,2001,41(5/6): 589-596.
|
[5] |
黄磊, 孙建安, 豆福全, 段文山, 刘兴霞. (3+1)维非线性Burgers系统的新的分离变量解及其局域激发结构与分形结构[J].物理学报, 2007,56(2): 611-619.(HUANG Lei, SUN Jian-an, DOU Fu-quan, DUAN Wen-shan, LIU Xing-xia. New variable separation solutions, localized structures and fractals in the (3+1)-dimensional nonlinear Burgers system[J].Acta Physica Sinica,2007,56(2): 611-619.(in Chinese))
|
[6] |
石玉仁, 吕克璞, 段文山, 杨红娟. 变系数Burgers方程的精确解[J]. 兰州大学学报(自然科学版), 2005,41(4): 107-111.(SHI Yu-ren, Lü Ke-pu, DUAN Wen-shan, YANG Hong-juan. Exact solutions to Burgers equation with variable coefficients[J].Journal of Lanzhou University(Natural Sciences),2005,41(4): 107-111.(in Chinese))
|
[7] |
史秀珍, 斯仁道尔吉. 变系数Burgers方程与KdV-Burgers方程的试探函数解[J].内蒙古大学学报(自然科学版), 2012,43(1): 23-26.(SHI Xiu-zhen, Sirendaoerji. Trial function solutions of the variable coefficients Burgers equation and the KdV-Burgers equation[J].Journal of Inner Mongolia University(Natural Sciences),2012,43(1): 23-26.(in Chinese))
|
[8] |
石玉仁, 汪映海, 杨红娟, 吕克璞, 段文山. 广义变系数Burgers方程的精确解[J]. 华东师范大学学报(自然科学版), 2006,2006(5): 27-33.(SHI Yu-ren, WANG Ying-hai, YANG Hong-juan, L Ke-pu, DUAN Wen-shan. Exact solution of generalized Burgers’ equation with variable coefficients[J].Journal of East China Normal University(Natural Sciences),2006,2006(5): 27-33.(in Chinese))
|
[9] |
鲜大权, 戴正德. 应用指数函数法求解变系数耦合Burgers系统[J]. 应用数学学报, 2010,33(3): 559-565.(XIAN Da-quan, DAI Zheng-de. Application of exp-function method to coupled Burgers equation with variable coefficients[J].Acta Mathematicae Applicatae Sinica,2010,33 (3): 559-565.(in Chinese))
|
[10] |
Vaganan B M, Jeyalakshmi T. Generalized Burgers equations transformable to the Burgers equation[J].Studies in Applied Mathematics, 2011,127(3): 221-220.
|
[11] |
QU Chang-zheng, WANG Ai-qin. The complete integrability of variable-coefficient Burgers equations[J].Communications in Theoretical Physics,1996,26(3): 369-372.
|
[12] |
Liao S J.Beyond Pertubation: Introduction to Homotopy Analysis Method[M]. London: Chapman & Hall/CRC, 2004.
|
[13] |
姜丙利, 柳银萍. 带预测参数的同伦分析方法及其在两个非线性系统中的应用[J]. 华东师范大学学报(自然科学版), 2013,2013(3): 131-139, 148.(JIANG Bing-li, LIU Yin-ping. Predictor homotopy analusis method and its application to two nonlinear systems[J].Journal of East China Normal University(Natural Sciences),2013,2013(3): 131-139, 148.(in Chinese))
|
[14] |
宋辉, 李芬, 徐献芝. 电池系统建模中Butler-Volmer方程的同伦分析求解[J]. 应用数学和力学, 2013,34(4): 373-382.(SONG Hui, LI Fen, XU Xian-zhi. Analytical solution of Butler-Volmer equation in battery system modeling[J].Applied Mathematics and Mechanics,2013,34(4): 373-382.(in Chinese))
|
[15] |
S·侯斯纳因, A·梅姆德, A·阿里. 二阶流体在旋转坐标系中的三维管道流动[J]. 应用数学和力学, 2012,33(3): 280-291.(Hussnain S, Mehmood A, Ali A. Three dimensional channel flow of second grade fluid in a rotating frame[J].Applied Mathematics and Mechanics,2012,33(3): 280-291.(in Chinese))
|
[16] |
韩祥临, 欧阳成, 宋涛, 戴孙圣. 交通拥堵迁移问题的同伦分析法[J]. 物理学报, 2013,62(17): 170203.(HAN Xiang-lin, OUYANG Cheng, SONG Tao, DAI Sun-sheng. The homotopy analusis method for a class of jamming transition problem in traffic flow[J].Acta Physica Sinica,2013,62(17): 170203.(in Chinese))
|
[17] |
王玉兰, 朝鲁. 利用再生核解一类变系数偏微分方程[J]. 应用数学和力学, 2008,29(1): 118-126.(WANG Yu-lan, CHAO Lu. Partial differential equation with variable coefficients[J].Applied Mathematics and Mechanics,2008,29(1): 118-126.(in Chinese))
|
[18] |
朱倩, 商学利, 陈文振. 六组点堆中子动力学方程组的同伦分析解[J]. 物理学报, 2012,61(7): 070201.(ZHU Qian, SHANG Xue-li, CHEN Wen-zhen. Homotopy analysis solution of point reactor kinetics equations with six-group delayed neutrons[J].Acta Physica Sinica,2012,61 (7): 070201.(in Chinese))
|
[19] |
钟敏玲, 刘秀湘. 脉冲时滞Hassell-Varley-Holling功能性反应捕食者-食饵系统周期解存在的充要条件[J]. 应用数学学报, 2012,35(2): 297-308.(ZHONG Min-ling, LIU Xiu-xiang. Necessary and sufficient conditions for the existence of periodic solutions in an impulsive predator-prey system with Hassell-Varley-Holling response[J].Acta Mathematicae Applicatae Sinica,2012,35(2): 297-308.(in Chinese))
|
[20] |
司新辉, 郑连存, 张欣欣, 司新毅. 微极性流体在上下正交移动的渗透平行圆盘间的流动[J]. 应用数学和力学, 2012,33(8): 907-918.(SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a micropolar fluid between two orthogonally moving porous disks[J].Applied Mathematics and Mechanics,2012,33(8): 907-918.(in Chinese))
|
[21] |
李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究[J]. 物理学报, 2013,62(4): 044701.(LI Yong-qiang, ZHANG Chen-hui, LIU Ling, DUAN Li, KANG Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity[J].Acta Physica Sinica,2013,62(4): 044701.(in Chinese))
|
[22] |
郑敏毅, 胡辉, 郭源君, 孙光永. 应用优化的同伦分析法求解非线性Jerk方程[J]. 振动与冲击, 2012,31(5): 21-25.(ZHENG Min-yi, HU Hui, GUO Yuan-jun, SUN Guang-yong. Optimal homotopy analysis method applied to solve a nonlinear Jerk equation[J].Journal of Vibration and Shock,2012,31(5): 21-25.(in Chinese))
|
[23] |
Fletcher C A J. Burgers equation: a model for all reasons[C]//Noye J ed.Numerical Solutions of Partial Differential Equations. Amsterdam: North-Holland, 1982.
|
[24] |
Cole J D. On a quaslinear parabolic equations occurring in aerodynamics[J].Quart Appl Math,1951,9: 225-236.
|
[25] |
Hopf E. The partial differential equation[J].Communications on Pure and Applied Mathematics,1950,3(3): 201-230.
|
[26] |
Olver P J.Applications of Lie Groups to Differential Equations[M]. New York: Springer-Verlag, 1993.
|
[27] |
Bluman G, Anco S.Symmetry and Integration Methods for Differential Equations[M]. New York : Springer, 2002.
|
[28] |
Ibragimov N H.A Practical Course in Differential Equations and Mathematical Modelling[M]. Beijing: Higher Education Press, 2009.
|
[29] |
Cheviakov A, Bluman G. Multidimensional partial differential equations systems: nonlocal symmetries, nonlocal conservation laws, exact solutions[J].Journal of Mathematics and Physics,2010,51(10): 103522.
|
[30] |
Qu C Z. Allowed transformations and symmetry classes of variable coefficient Burgers equations[J].IMA Journal of Applied Mathematics,1995,54(3): 203-225.
|
[31] |
Sophocleous C. Transformation properties of a variable-coefficient Burgers equation[J].Chaos, Solitons & Fractals,2004,20(5): 1047-1057.
|
[32] |
Pocheketa O A, Popovych R O. Reduction operators and exact solutions of generalized Burgers equations[J].Physics Letters A,2012,376(45): 2847-2850.
|
[33] |
Abd-el-Maleka M B, El-Mansi S M A. Group theoretic methods applied to Burgers’ equation[J].Journal of Computational and Applied Mathematics,2000,115(1/2): 1-12.
|
[34] |
Kutluay S, Bahadir A R, Ozdes A. Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods[J].Journal of Computational and Applied Mathematics,1999,103(2): 251-261.
|
[35] |
Ozis T, Aksan E N, Ozdes A. A finite element approach for solution of Burgers Equation[J].Applied Mathematics and Computation,2003,139(2/3): 417-428.
|
[36] |
Kadalbajoo M K, Awasthi A. A numerical method based on Crank-Nicolson scheme for Burgers’equation[J].Applied Mathematics and Computation,2006,182(2): 1430-1442.
|
[37] |
Hon Y C, Mao X Z. An efficient numerical scheme for Burgers’equation[J].Applied Mathematics and Computation,1998,95(1): 37-50.
|