ZHOU Shuo, HAN Ming-hua, MENG Huan-huan. Bisymmetric Damping and Stiffness Matrices Calibration With Test Data of Vibration Systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 697-711. doi: 10.3879/j.issn.1000-0887.2014.06.012
Citation: ZHOU Shuo, HAN Ming-hua, MENG Huan-huan. Bisymmetric Damping and Stiffness Matrices Calibration With Test Data of Vibration Systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 697-711. doi: 10.3879/j.issn.1000-0887.2014.06.012

Bisymmetric Damping and Stiffness Matrices Calibration With Test Data of Vibration Systems

doi: 10.3879/j.issn.1000-0887.2014.06.012
Funds:  The National Natural Science Foundation of China(11072085)
  • Received Date: 2013-10-09
  • Rev Recd Date: 2014-04-30
  • Publish Date: 2014-06-11
  • The problem of bisymmetric damping and stiffness matrices calibration with test data of vibration systems was discussed. Based on the eigen equation as well as bisymmetry of the damping and stiffness matrices, existence and uniqueness of the solution to the problem was studied by means of the theory and method for the inverse algebraic quadratic eigenvalue problem. A new method for the calibration of damping and stiffness matrices was presented. According to the properties of bisymmetric matrices, the bisymmetric solution to the matrix equation was studied. The general expression of the bisymmetric solution was obtained. Moreover, the related optimal approximation problem of any related matrix was addressed and the solution given. The damping and stiffness matrices calibrated with the method not only satisfy the quadratic eigen equation, but also are the unique bisymmetric matrix solution. A numerical example proves efficiency of the present method.
  • loading
  • [1]
    Tisseur F, Meerbergen K. The quadratic eigenvalue problem[J].SIAM Review,2001,43(2): 235-286.
    [2]
    桂冰, 戴华. 一类二次特征值反问题的中心对称解及其最佳逼近[J]. 高等学校计算数学学报, 2006,28(4): 367-373.(GUI Bing, DAI Hua. The centrosymmetric solution of the inverse quadratic eigenvalue problem and its optimal approximation[J].Numerical Mathematics: A Journal of Chinese Universities,2006,28(4): 367-373.(in Chinese))
    [3]
    郭丽杰, 周硕. 二次特征值反问题的对称次反对称解及其最佳逼近[J]. 吉林大学学报(理学版), 2009,47(6): 1185-1190.(GUO Li-jie, ZHOU Shuo. Symmetric and skew anti-symmetric solution of inverse quadratic eigenvalue problem and its optimal approximation[J].Journal of Jilin University(Science Edition),2009,47(6): 1185-1190.(in Chinese))
    [4]
    YUAN Yong-xin, DAI Hua. On a class of inverse quadratic eigenvalue problem[J].Journal of Computational and Applied Mathematics,2011,235(8): 2662-2669.
    [5]
    YUAN Yong-xin, DAI Hua. Solutions to an inverse monic quadratic eigenvalue problem[J].Linear Algebra and Its Applications,2011,434(11): 2367-2381.
    [6]
    Chu M T, KUO Yuen-cheng, LIN Wen-wei. On inverse quadratic eigenvalue problems with partially prescribed eigenstructive[J].SIAM Journal on Matrix Analysis and Applications,2004,25(4): 995-1020.
    [7]
    CAI Yun-feng, XU Shu-fang. On a quadratic inverse eigenvalue problem[J].Inverse Problems,2009,25(8): 085004. doi: 10.1088/0266-5611/25/8/085004.
    [8]
    谢冬秀, 张磊, 胡锡炎. 一类双对称矩阵反问题的最小二乘解[J]. 计算数学, 2000,22(1): 29-40.(XIE Dong-xiu, ZHANG Lei, HU Xi-yan. Least-square solutions of inverse problems for bisymmetric matrices[J].Mathematica Numerica Sinica,2000,22(1): 29-40.(in Chinese))
    [9]
    彭振赟, 胡锡炎, 张磊. 双对称矩阵的一类反问题[J]. 计算数学, 2005,27(1): 11-18.(PENG Zhen-yun, HU Xi-Yan, ZHANG Lei. One kind of inverse problem for the bisymmetric matrices[J].Mathematica Numerica Sinica,2005,27(1): 11-18.(in Chinese))
    [10]
    周硕, 吴柏生. 广义双对称矩阵反问题[J]. 高校应用数学学报(A辑), 2007,22(1): 120-126.(ZHOU Shuo, WU Bai-sheng. Inverse problem for general bisymmetric matrices[J].Applied Mathematics: A Journal of Chinese Universities(Ser A),2007,22(1): 120-126.(in Chinese))
    [11]
    陈景良, 陈向晖. 特殊矩阵[M]. 北京: 清华大学出版社, 2001.(CHEN Jing-liang, CHEN Xiang-hun.Special Matrices[M]. Beijing: Tsinghua University Press, 2001.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1124) PDF downloads(707) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return