WANG Xi-yun, LI Liang, YU Hai-bo. An Implicit Piecewise Dogleg Algorithm for Solving Trust-Region Subproblems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 610-619. doi: 10.3879/j.issn.1000-0887.2014.06.003
Citation: WANG Xi-yun, LI Liang, YU Hai-bo. An Implicit Piecewise Dogleg Algorithm for Solving Trust-Region Subproblems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 610-619. doi: 10.3879/j.issn.1000-0887.2014.06.003

An Implicit Piecewise Dogleg Algorithm for Solving Trust-Region Subproblems

doi: 10.3879/j.issn.1000-0887.2014.06.003
  • Received Date: 2013-11-21
  • Rev Recd Date: 2014-05-07
  • Publish Date: 2014-06-11
  • Based on the premise that Hessian matrix was positive definite, a differential equation model was established for the optimal curve. Then an implicit piecewise dogleg was constructed according to the differential equation. In turn, the implicit piecewise dogleg algorithm for solving trust-region subproblems was presented. And the rationality of the implicit piecewise dogleg path was analyzed and demonstrated. Numerical results indicate that the new algorithm is effective and practicable.
  • loading
  • [1]
    徐成贤, 陈志平, 李乃成. 近代优化方法[M]. 北京: 科学出版社, 2002.(XU Cheng-xian, CHEN Zhi-ping, LI Nai-cheng.Modern Optimization Method [M]. Beijing: Science Press, 2002.(in Chinese))
    [2]
    后六生, 孙文瑜. 三项预处理共轭梯度法与信赖域子问题[J]. 南京师大学报(自然科学版), 2001,24(3): 1-6.(HOU Liu-sheng, SUN Wen-yu. Three-term preconditioned conjugate gradient method and trust region subproblem[J].Journal of Nanjing Normal University (Natural Science),2001,24(3): 1-6.(in Chinese))
    [3]
    赵英良, 徐成贤. 信赖域子问题使用重新开始策略的共轭梯度法[J]. 高校应用数学学报(A辑), 2003,18(3): 341-349.(ZHAO Ying-liang, XU Cheng-xian. Conjugate gradient method using restart strategy for solving trust region subproblems[J].Applied Mathematics: A Journal of Chinese Universities(Ser A),2003,18(3): 341-349.(in Chinese))
    [4]
    陈争, 马昌风. 求解信赖域子问题的一个光滑牛顿法[J]. 福建师范大学学报(自然科学版), 2011,27(4): 31-35.(CHEN Zheng, MA Chang-feng. A smoothing Newton method for trust region subproblem[J].Journal of Fujian Normal University(Natural Science Edition),2011,27(4): 31-35.(in Chinese))
    [5]
    张立, 唐志强. 解信赖域子问题的混合折线法[J]. 南京师大学报(自然科学版), 2001,24(1): 28-32.(ZHANG Li, TANG Zhi-qiang. The hybrid dogleg method to solve subproblems of trust region[J].Journal of Nanjing Normal University (Natural Science),2001,24(1): 28-32.(in Chinese))
    [6]
    PU Ding-guo, HAN Bo-shun, YAO Lin, ZHENG Guang-hua. A class of dogleg trust region methods[J].Operations Research Transactions,2003,7(1): 1-10.
    [7]
    CHEN Jun, SUN Wen-yu. Nonmonotone adaptive trust region algorithms with indefinite dogleg path for unconstrained minimization[J].Northeast Math Journal,2008,24(1): 19-30.
    [8]
    Powell M J D. A hybrid method for nonlinear equations[C]//Rabonowitz P.Numerical Methods for Nonlinear Algebraic Equations . London: Gordon and Breach, 1970: 87-114.
    [9]
    Dennis J E, Mei H H W. Two new unconstrained optimization algorithms which use function and gradient values[J].Journal of Optimization Theory and Applications,1979,28(4): 453-482.
    [10]
    赵英良, 徐成贤. 解信赖域子问题的切线单折线法[J]. 数值计算与计算机应用, 2000,21(1): 77-80.(ZHAO Ying-liang, XU Cheng-xian. Tangent single dogleg method for trust region subproblem[J].Journal of Numerical Methods and Computer Applications,2000,21(1): 77-80.(in Chinese))
    [11]
    颜庆津. 数值分析[M]. 北京: 北京航空航天大学出版社, 2006.(YAN Qing-jin.Numerical Analysis [M]. Beijing: Beihang University Press, 2006.(in Chinese))
    [12]
    袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京: 科学出版社, 2007.(YUAN Ya-xiang, SUN Wen-yu.Optimization Theory and Methods [M]. Beijing: Science Press, 2007.(in Chinese))
    [13]
    李董辉, 童小娇, 万中. 数值最优化算法与理论[M]. 北京: 科学出版社, 2010.(LI Dong-hui, TONG Xiao-jiao, WAN Zhong.Numerical Optimization Algorithms and Theory [M]. Beijing: Science Press, 2010.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1317) PDF downloads(669) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return