HUANG Hu. Energy Conservation and Resonance Conditions for Interactions of an Infinite Number of Ocean Surface Waves[J]. Applied Mathematics and Mechanics, 2014, 35(5): 565-571. doi: 10.3879/j.issn.1000-0887.2014.05.010
Citation: HUANG Hu. Energy Conservation and Resonance Conditions for Interactions of an Infinite Number of Ocean Surface Waves[J]. Applied Mathematics and Mechanics, 2014, 35(5): 565-571. doi: 10.3879/j.issn.1000-0887.2014.05.010

Energy Conservation and Resonance Conditions for Interactions of an Infinite Number of Ocean Surface Waves

doi: 10.3879/j.issn.1000-0887.2014.05.010
Funds:  The National Natural Science Foundation of China (11172157)
  • Received Date: 2013-10-16
  • Rev Recd Date: 2014-03-01
  • Publish Date: 2014-05-15
  • Based on the energy conservation law and the existing wave-wave resonance conditions for ocean surface waves, a typical group of resonance conditions for the 3-4-5-6-7 wave interactions was put forward through expansion of the Hamiltonian energy functional into a 7-order symmetrical integro-power series, therefore a general group of resonance conditions for an infinite number of wave interactions was induced and deduced. The work may make a great improvement in the present structure of the fundamental wave turbulence theory.
  • loading
  • [1]
    Phillips O M. On the dynamics of unsteady gravity waves of finite amplitude—part 1: the elementary interactions [J].Journal of Fluid Mechanics,1960,9(2): 193-217.
    [2]
    Hasselmann K. On the non-linear energy transfer in a gravity-wave spectrum—part 1: general theory[J].Journal of Fluid Mechanics,1962,12(4): 481-500.
    [3]
    Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J].Journal of Applied Mechanics and Technical Physics,1968,9(2): 190-194.
    [4]
    Dyachenko A I, Lvov Y V. On the Hasselmann and Zakharov approaches to the kinetic equations for gravity waves[J].Journal of Physical Oceanography,1995,25(12): 3237-3238.
    [5]
    Arnold V I.Mathematical Methods of Classical Mechanics [M]. Berlin: Springer, 1978.
    [6]
    Zakharov V E, L’Vov V S, Falkovich G.Kolmogorov Spectra of Turbulence I: Wave Turbulence [M]. Berlin: Springer, 1992.
    [7]
    HUANG Hu. Dynamics of Surface Waves in Coastal Waters: Wave-Current-Bottom Interactions [M]. Beijing-Berlin: Higher Education Press-Springer, 2009.
    [8]
    Kartashova E.Nonlinear Resonance Analysis: Theory, Computation, Applications [M]. Cambridge: Cambridge University, 2011.
    [9]
    邓子辰, 钟万勰. 等式约束非线性控制系统的时程精细计算[J]. 应用数学和力学, 2002,23(1): 16-22.(DENG Zi-chen, ZHONG Wan-xie. Time precise integration method for constrained nonlinear control system[J].Applied Mathematics and Mechanics,2002, 23(1): 16-22.(in Chinese))
    [10]
    黄虎, 丁平兴, 吕秀红. 广义缓坡方程[J]. 应用数学和力学, 2001,22(6): 645-650.(HUANG Hu, DING Ping-xing, L Xiu-hong. Extended mild-slope equation[J].Applied Mathematics and Mechanics,2001,22(6): 645-650.(in Chinese))
    [11]
    Feynman R P, Leighton R B, Sands M.The Feynman Lectures on Physics [M]. Beijing: Beijing World Publishing Corporation, 2004.
    [12]
    杨振宁. 杨振宁文集[M]. 上海: 华东师范大学出版社,1998.(Yang C N.Chen Ning Yang’s Collection [M]. Shanghai: The East China Normal University Publishing Press, 1998.(in Chinese))
    [13]
    郭奕玲, 沈慧君. 诺贝尔物理学奖1901-2010[M]. 北京: 清华大学出版社, 2012.(GUO Yi-ling, SHEN Hui-jun.The Nobel Prize in Physics 1901-2010 [M]. Beijing: Tsinghua University Press, 2012.(in Chinese))
    [14]
    Mcgoldrick L F. Resonant interactions among capillary-gravity waves[J].Journal of Fluid Mechanics,1965,21(2): 305-331.
    [15]
    McLean J W. Instabilities of finite-amplitude gravity waves on water of finite depth[J].Journal of Fluid Mechanics,1982,114: 331-341.
    [16]
    Krasitskii V P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves[J]. Journal of Fluid Mechanics,1994,272: 1-20.
    [17]
    黄虎. 海洋表面波的3-4-5波共振守恒理论[J]. 物理学报, 2013,62(13): 139201.(HUANG Hu. A theory of 3-4-5-wave resonance and conservation for ocean surface waves[J]. Acta Physica Sinica,2013,62(13): 139201.(in Chinese))
    [18]
    Komen G J, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P A E M.Dynamics and Modeling of Ocean Waves [M]. Cambridge: Cambridge University Press, 1994.
    [19]
    Janssen P A E M.The Interaction of Ocean Waves and Wind [M]. Cambridge: Cambridge University Press, 2004.
    [20]
    Newell A C, Rumpf B. Wave turbulence[J].Annu Rev Fluid Mech,2011,43: 59-78.
    [21]
    Nazarenko S.Wave Turbulence [M]. Berlin: Springer, 2011.
    [22]
    Goldstein H.Classical Mechanics [M]. Massachusetts: Addison-Wesley Publishing Company, 1980.
    [23]
    Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J].Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1991,434(1890): 9-13.
    [24]
    Kolmogorov A N. Dissipation of energy in the locally isotropic turbulence[J].Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1991,434(1890): 15-17.
    [25]
    Obukhov A M. On the distribution of energy in the spectrum of turbulent flow[J]. Dokl Akad Nauk SSSR,1941,32(1): 22-24.
    [26]
    Zakharov V E. Weak turbulence in media with a decay spectrum[J]. Journal of Applied Mechanics and Technical Physics,1965,6(4): 22-24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1249) PDF downloads(912) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return